860583 | 12:0 SM (d18:1/12:0)

N-lauroyl-D-erythro-sphingosylphosphorylcholine


Powder

Size SKU Packaging Price
5mg 860583P-5mg 860583P-5mg 1 x 5mg $397.80
10mg 860583P-10mg 860583P-10mg 1 x 10mg $711.90
Base Price: ${originalprice|money}
Custom Packaging: (${concentration} @$4.00/ea. + $100) ${custompackagingtotal|money}
Packaging: ${concentration}
Item Total: ${totalprice|money}
(Sales Tax may apply)
Please select an option above.
${sku} - ${concentration}

12:0 SM (d18:1/12:0)

12:0 SM (d18:1/12:0)

N-lauroyl-D-erythro-sphingosylphosphorylcholine

As a major constituent of cell membranes, sphingomyelin is found at particularly high concentrations in the membranes of nerve cells (in the myelin sheaths) and red blood cells. It was previously thought to have a purely structural role, similar to the function of phosphatidylcholine, through intermolecular interactions mediated by the 2-amide group, the 3-hydroxy group and the 4,5-trans double bond of the sphingoid base1. However, it is now appreciated that sphingomyelin has a high affinity for cholesterol and that these two lipids pack tightly into liquid-ordered domains among a liquid-disordered phase to form lipid rafts1,2. These membrane microdomains are thought to function as signaling platforms that regulate the localization and interactions of proteins. But sphingomyelin does not just influence signaling as a component of lipid rafts — it is also a precursor to ceramides and other sphingolipid metabolites that comprise the sphingomyelin cycle or sphingolipid network1,2.
1. Christie, W.W. Sphingomyelin and related lipids. The AOCS Lipid Library.
2. Milhas, D., Clarke, C.J. & Hannun, Y.A. Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett. 584, 1887-1894 (2010). [PubMed]
Hygroscopic
No
Light Sensitive
No
Molecular Formula
C35H71N2O6P
Percent Composition
C 64.98%, H 11.06%, N 4.33%, O 14.84%, P 4.79%
Purity
>99%
Stability
1 Years
Storage Temperature
-20°C
CAS Number
474923-21-2
CAS Registry Number is a Registered Trademark of the American Chemical Society
Formula Weight
646.922
Exact Mass
646.505
Synonyms
Dodecanoyl Sphingomyelin
N-(dodecanoyl)-sphing-4-enine-1-phosphocholine

Shon JC, Lee SM, Jung JH, Wu Z, Kwon YS, Sim HJ, Seo JS. Integrated metabolomics and lipidomics reveals high accumulation of polyunsaturated lysoglycerophospholipids in human lung fibroblasts exposed to fine particulate matter. Ecotoxicol Environ Saf. 2020 Jul 1;202:110896. doi: 10.1016/j.ecoenv.2020.110896. Epub ahead of print. PMID: 32622306.

PubMed ID: 32622306

Song JW, Lam SM, Fan X, Cao WJ, Wang SY, Tian H, Chua GH, Zhang C, Meng FP, Xu Z, Fu JL, Huang L, Xia P, Yang T, Zhang S, Li B, Jiang TJ, Wang R, Wang Z, Shi M, Zhang JY, Wang FS, Shui G. Omics-Driven Systems Interrogation of Metabolic Dysregulation in COVID-19 Pathogenesis. Cell Metab. 2020 Jun 24:S1550-4131(20)30317-X. doi: 10.1016/j.cmet.2020.06.016. Epub ahead of print. PMID: 32610096; PMCID: PMC7311890.

PubMed ID: 32610096

Huang J, Wang Q, Qi Z, Zhou S, Zhou M, Wang Z. Lipidomic Profiling for Serum Biomarkers in Mice Exposed to Ionizing Radiation. Dose Response. 2020 Apr 23;18(2):1559325820914209. doi: 10.1177/1559325820914209. PMID: 32362795; PMCID: PMC7180312.

PubMed ID: 32362795

Gao L, Cazenave-Gassiot A, Burla B, Wenk MR, Torta F. Dual mass spectrometry as a tool to improve annotation and quantification in targeted plasma lipidomics. Metabolomics. 2020 Apr 17;16(5):53. doi: 10.1007/s11306-020-01677-z. PMID: 32303853.

PubMed ID: 32303853

Régnier M, Polizzi A, Smati S, Lukowicz C, Fougerat A, Lippi Y, Fouché E, Lasserre F, Naylies C, Bétoulières C, Barquissau V, Mouisel E, Bertrand-Michel J, Batut A, Saati TA, Canlet C, Tremblay-Franco M, Ellero-Simatos S, Langin D, Postic C, Wahli W, Loiseau N, Guillou H, Montagner A. Hepatocyte-specific deletion of Pparα promotes NAFLD in the context of obesity. Sci Rep. 2020 Apr 16;10(1):6489. doi: 10.1038/s41598-020-63579-3. PMID: 32300166; PMCID: PMC7162950.

PubMed ID: 32300166

Fuse S, Sugimoto M, Kurosawa Y, Kuroiwa M, Aita Y, Tomita A, Yamaguchi E, Tanaka R, Endo T, Kime R, Hamaoka T. Relationships between plasma lipidomic profiles and brown adipose tissue density in humans. Int J Obes (Lond). 2020 Mar 3. doi: 10.1038/s41366-020-0558-y. Epub ahead of print. PMID: 32127643.

PubMed ID: 32127643

Santa-Marinha L, Castanho I, Silva RR, Bravo FV, Miranda AM, Meira T, Morais-Ribeiro R, Marques F, Xu Y, Point du Jour K, Wenk M, Chan RB, Di Paolo G, Pinto V, Oliveira TG. Phospholipase D1 Ablation Disrupts Mouse Longitudinal Hippocampal Axis Organization and Functioning. Cell Rep. 2020 Mar 24;30(12):4197-4208.e6. doi: 10.1016/j.celrep.2020.02.102. PMID: 32209478.

PubMed ID: 32209478

Garate J, Lage S, Martín-Saiz L, Perez-Valle A, Ochoa B, Boyano MD, Fernández R, Fernández JA. Influence of Lipid Fragmentation in the Data Analysis of Imaging Mass Spectrometry Experiments. J Am Soc Mass Spectrom. 2020 Mar 4;31(3):517-526. doi: 10.1021/jasms.9b00090. Epub 2020 Feb 20. PMID: 32126773.

PubMed ID: 32126773

Xie Y, Wu B, Wu Z, Tu X, Xu S, Lv X, Yin H, Xiang J, Chen H, Wei F. Ultrasound-assisted one-phase solvent extraction coupled with liquid chromatography-quadrupole time-of-flight mass spectrometry for efficient profiling of egg yolk lipids. Food Chem. 2020 Mar 2;319:126547. doi: 10.1016/j.foodchem.2020.126547. Epub ahead of print. PMID: 32182541.

PubMed ID: 32182541

Iaea DB, Spahr ZR, Singh RK, Chan RB, Zhou B, Bareja R, Elemento O, Di Paolo G, Zhang X, Maxfield FR. Stable reduction of STARD4 alters cholesterol regulation and lipid homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Apr;1865(4):158609. doi: 10.1016/j.bbalip.2020.158609. Epub 2020 Jan 7. PMID: 31917335; PMCID: PMC6996790.

PubMed ID: 31917335

Li H, Song Y, Zhang H, Wang X, Cong P, Xu J, Xue C. Comparative lipid profile of four edible shellfishes by UPLC-Triple TOF-MS/MS. Food Chem. 2020 Apr 25;310:125947. doi: 10.1016/j.foodchem.2019.125947. Epub 2019 Dec 4. PMID: 31841939.

PubMed ID: 31841939

Saville JT, Fuller M. Sphingolipid dyshomeostasis in the brain of the mouse model of mucopolysaccharidosis type IIIA. Mol Genet Metab. 2019 Aug 29. pii: S1096-7192(19)30397-X. doi: 10.1016/j.ymgme.2019.08.008. [Epub ahead of print]

PubMed ID: 31494022

Wang X, Zhang H, Song Y, Cong P, Li Z, Xu J, Xue C. Comparative Lipid Profile Analysis of Four Fish Species by Ultraperformance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. J Agric Food Chem. 2019 Aug 21;67(33):9423-9431. doi: 10.1021/acs.jafc.9b03303. Epub 2019 Aug 8.

PubMed ID: 31329442

Chung KP, Hsu CL, Fan LC, Huang Z, Bhatia D, Chen YJ, Hisata S, Cho SJ, Nakahira K, Imamura M, Choi ME, Yu CJ, Cloonan SM, Choi AMK. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis. Nat Commun. 2019 Jul 29;10(1):3390. doi: 10.1038/s41467-019-11327-1.

PubMed ID: 31358769

Pan J, Tao C, Cao C, Zheng Q, Lam SM, Shui G, Liu X, Li K, Zhao J, Wang Y. Adipose lipidomics and RNA-Seq analysis revealed the enhanced mitochondrial function in UCP1 knock-in pigs. Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Oct;1864(10):1375-1383. doi: 10.1016/j.bbalip.2019.06.017. Epub 2019 Jul 2.


Sarkar C, Jones JW, Hegdekar N, Thayer JA, Kumar A, Faden AI, Kane MA, Lipinski MM. PLA2G4A/cPLA2-mediated lysosomal membrane damage leads to inhibition of autophagy and neurodegeneration after brain trauma. Autophagy. 2019 Jun 25:1-20. doi: 10.1080/15548627.2019.1628538. [Epub ahead of print]

PubMed ID: 31238788

Im SS, Park HY, Shon JC, Chung IS, Cho HC, Liu KH, Song DK. Plasma sphingomyelins increase in pre-diabetic Korean men with abdominal obesity. PLoS One. 2019 Mar 5;14(3):e0213285. doi: 10.1371/journal.pone.0213285. eCollection 2019.

PubMed ID: 30835753

Chen S, Wang J, Wang M, Lu J, Cai Y, Li B. In vitro fertilization alters phospholipid profiles in mouse placenta. J Assist Reprod Genet. 2019 Jan 4. doi: 10.1007/s10815-018-1387-y. [Epub ahead of print]

PubMed ID: 30610659