860062 | Brain SM

Sphingomyelin (Brain, Porcine)


Size SKU Packaging Price
25mg 860062C-25mg 860062C-25mg 1 x 25mg 10mg/mL 2.5mL $170.75
200mg 860062C-200mg 860062C-200mg 2 x 100mg 25mg/mL 4mL $342.00


Size SKU Packaging Price
25mg 860062P-25mg 860062P-25mg 1 x 25mg $170.75
200mg 860062P-200mg 860062P-200mg 1 x 200mg $342.00
500mg 860062P-500mg 860062P-500mg 1 x 500mg $530.00
1g 860062P-1g 860062P-1g 1 x 1g $835.76
Base Price: ${originalprice|money}
Custom Packaging: (${concentration} @$4.00/ea. + $100) ${custompackagingtotal|money}
Packaging: ${concentration}
Item Total: ${totalprice|money}
(Sales Tax may apply)
Please select an option above.
${sku} - ${concentration}

Brain SM

Brain SM

Sphingomyelin (Brain, Porcine)

As a major constituent of cell membranes, sphingomyelin is found at particularly high concentrations in the membranes of nerve cells (in the myelin sheaths) and red blood cells. It was previously thought to have a purely structural role, similar to the function of phosphatidylcholine, through intermolecular interactions mediated by the 2-amide group, the 3-hydroxy group and the 4,5-trans double bond of the sphingoid base1. However, it is now appreciated that sphingomyelin has a high affinity for cholesterol and that these two lipids pack tightly into liquid-ordered domains among a liquid-disordered phase to form lipid rafts1,2. These membrane microdomains are thought to function as signaling platforms that regulate the localization and interactions of proteins. But sphingomyelin does not just influence signaling as a component of lipid rafts — it is also a precursor to ceramides and other sphingolipid metabolites that comprise the sphingomyelin cycle or sphingolipid network1,2.
1. Christie, W.W. Sphingomyelin and related lipids. The AOCS Lipid Library.
2. Milhas, D., Clarke, C.J. & Hannun, Y.A. Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett. 584, 1887-1894 (2010). [PubMed]
Light Sensitive
1 Year
Storage Temperature
CAS Number
CAS Registry Number is a Registered Trademark of the American Chemical Society
Formula Weight
Exact Mass
18:0 SM Octadecanoyl Sphingomyelin

Bucciantini M, Leri M, Stefani M, Melki R, Zecchi-Orlandini S, Nosi D. The Amphipathic GM1 Molecule Stabilizes Amyloid Aggregates, Preventing their Cytotoxicity. Biophys J. 2020 Jul 21;119(2):326-336. doi: 10.1016/j.bpj.2020.06.005. Epub 2020 Jun 12. PMID: 32579964; PMCID: PMC7376221.

PubMed ID: 32579964

Schubert T, Sych T, Madl J, Xu M, Omidvar R, Patalag LJ, Ries A, Kettelhoit K, Brandel A, Mely Y, Steinem C, Werz DB, Thuenauer R, Römer W. Differential recognition of lipid domains by two Gb3-binding lectins. Sci Rep. 2020 Jun 16;10(1):9752. doi: 10.1038/s41598-020-66522-8. PMID: 32546842; PMCID: PMC7297801.

PubMed ID: 32546842

Huang J, Hiraki S, Feigenson GW. Calculation of Liquid-Disordered/Liquid-Ordered Line Tension from Pairwise Lipid Interactions. J Phys Chem B. 2020 Jun 18;124(24):4949-4959. doi: 10.1021/acs.jpcb.0c03329. Epub 2020 Jun 4. PMID: 32436388.

PubMed ID: 32436388

Barros M, Houlihan WJ, Paresi CJ, Brendel M, Rynearson KD, Lee CW, Prikhodko O, Cregger C, Chang G, Wagner SL, Gilchrist ML, Li YM. γ-Secretase Partitioning into Lipid Bilayers Remodels Membrane Microdomains after Direct Insertion. Langmuir. 2020 Jun 16;36(23):6569-6579. doi: 10.1021/acs.langmuir.0c01178. Epub 2020 Jun 4. PMID: 32432881.

PubMed ID: 32432881

Sibold J, Tewaag VE, Vagedes T, Mey I, Steinem C. Phase separation in pore-spanning membranes induced by differences in surface adhesion. Phys Chem Chem Phys. 2020 May 6;22(17):9308-9315. doi: 10.1039/d0cp00335b. PMID: 32309836.

PubMed ID: 32309836

Barros M, Houlihan WJ, Paresi CJ, Brendel M, Rynearson K, Lee CW, Prikhodko O, Cregger C, Chang G, Wagner SL, Gilchrist ML, Li Y. γ-Secretase Partitioning into Lipid Bilayers Remodels Membrane Microdomains after Direct Insertion. Langmuir. 2020 May 20. doi: 10.1021/acs.langmuir.0c01178. Epub ahead of print. PMID: 32432881.

PubMed ID: 32432881

Suga K, Kitagawa K, Taguchi S, Okamoto Y, Umakoshi H. Evaluation of Molecular Ordering in Bicelle Bilayer Membranes Based on Induced Circular Dichroism Spectra. Langmuir. 2020 Mar 31;36(12):3242-3250. doi: 10.1021/acs.langmuir.9b03710. Epub 2020 Mar 20. PMID: 32163713.

PubMed ID: 32163713

Kishimoto T, Tomishige N, Murate M, Ishitsuka R, Schaller H, Mély Y, Ueda K, Kobayashi T. Cholesterol asymmetry at the tip of filopodia during cell adhesion. FASEB J. 2020 Mar 12. doi: 10.1096/fj.201900065RR. Epub ahead of print. PMID: 32162745.

PubMed ID: 32162745

Träger J, Widder K, Kerth A, Harauz G, Hinderberger D. Effect of Cholesterol and Myelin Basic Protein (MBP) Content on Lipid Monolayers Mimicking the Cytoplasmic Membrane of Myelin. Cells. 2020 Feb 25;9(3):E529. doi: 10.3390/cells9030529. PMID: 32106542.

PubMed ID: 32106542

Suga K, Kitagawa K, Taguchi S, Okamoto Y, Umakoshi H. Evaluation of Molecular Ordering in Bicelle Bilayer Membranes Based on Induced Circular Dichroism Spectra. Langmuir. 2020 Mar 12. doi: 10.1021/acs.langmuir.9b03710. Epub ahead of print. PMID: 32163713.

PubMed ID: 32163713

Fitzgerald BL, Molins CR, Islam MN, Graham B, Hove PR, Wormser GP, Hu L, Ashton LV, Belisle JT. Host Metabolic Response in Early Lyme Disease. J Proteome Res. 2020 Jan 9;10.1021/acs.jproteome.9b00470. doi: 10.1021/acs.jproteome.9b00470. [Epub ahead of print]. PMID: 31821002.

PubMed ID: 31821002

Patel J, Chowdhury EA, Noorani B, Bickel U, Huang J. Isoflurane increases cell membrane fluidity significantly at clinical concentrations. Biochim Biophys Acta Biomembr. 2020 Feb 1;1862(2):183140. doi: 10.1016/j.bbamem.2019.183140. Epub 2019 Nov 29.

PubMed ID: 31790694

Sato Y, Okabe N, Note Y, Hashiba K, Maeki M, Tokeshi M, Harashima H. Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles. Acta Biomater. 2020 Jan 15;102:341-350. doi: 10.1016/j.actbio.2019.11.022. Epub 2019 Nov 13.

PubMed ID: 31733331

Zhu W, Wang RF, Khalifa I, Li CM. Understanding toward the Biophysical Interaction of Polymeric Proanthocyanidins (Persimmon Condensed Tannins) with Biomembranes: Relevance for Biological Effects. J Agric Food Chem. 2019 Oct 9;67(40):11044-11052. doi: 10.1021/acs.jafc.9b04508. Epub 2019 Sep 27.

PubMed ID: 31545599

Novak M, Čepin U, Hodnik V, Narat M, Jamnik M, Kraševec N, Sepčić K, Anderluh G. Functional studies of aegerolysin and MACPF-like proteins in Aspergillus niger. Mol Microbiol. 2019 Aug 3. doi: 10.1111/mmi.14360. [Epub ahead of print]

PubMed ID: 31376198

Ryu YS, Yun H, Chung T, Suh JH, Kim S, Lee K, Wittenberg NJ, Oh SH, Lee B, Lee SD. Kinetics of lipid raft formation at lipid monolayer-bilayer junction probed by surface plasmon resonance. Biosens Bioelectron. 2019 Oct 1;142:111568. doi: 10.1016/j.bios.2019.111568. Epub 2019 Aug 10.

PubMed ID: 31442945

Sakamoto W, Canals D, Salamone S, Allopenna J, Clarke CJ, Snider J, Obeid LM, Hannun YA. Probing compartment-specific sphingolipids with targeted bacterial sphingomyelinases and ceramidases. J Lipid Res. 2019 Jun 26. pii: jlr.M094722. doi: 10.1194/jlr.M094722. [Epub ahead of print]

PubMed ID: 31243119

Kinoshita M, Chitose T, Matsumori N. Mechanism of local anesthetic-induced disruption of raft-like ordered membrane domains. Biochim Biophys Acta Gen Subj. 2019 Sep;1863(9):1381-1389. doi: 10.1016/j.bbagen.2019.06.008. Epub 2019 Jun 15.

PubMed ID: 31207252

Bignon EA, Albornoz A, Guardado-Calvo P, Rey FA, Tischler ND. Molecular organization and dynamics of the fusion protein Gc at the hantavirus surface. Elife. 2019 Jun 10;8. pii: e46028. doi: 10.7554/eLife.46028.

PubMed ID: 31180319

Velasco-Olmo A, Ormaetxea Gisasola J, Martinez Galvez JM, Vera Lillo J, Shnyrova AV. Combining patch-clamping and fluorescence microscopy for quantitative reconstitution of cellular membrane processes with Giant Suspended Bilayers. Sci Rep. 2019 May 10;9(1):7255. doi: 10.1038/s41598-019-43561-4.

PubMed ID: 31076583

Shi JM, Lv JM, Gao BX, Zhang L, Ji SR. Endosomal pH favors shedding of membrane-inserted amyloid-β peptide. Protein Sci. 2019 May;28(5):889-899. doi: 10.1002/pro.3596. Epub 2019 Mar 15.

PubMed ID: 30825227

St Clair JW, London E. Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles. Biochim Biophys Acta Biomembr. 2019 Mar 20;1861(6):1112-1122. doi: 10.1016/j.bbamem.2019.03.012. [Epub ahead of print]

PubMed ID: 30904407

Panevska A, Hodnik V, Skočaj M, Novak M, Modic Š, Pavlic I, Podržaj S, Zarić M, Resnik N, Maček P, Veranič P, Razinger J, Sepčić K. Pore-forming protein complexes from Pleurotus mushrooms kill western corn rootworm and Colorado potato beetle through targeting membrane ceramide phosphoethanolamine. Sci Rep. 2019 Mar 25;9(1):5073. doi: 10.1038/s41598-019-41450-4.

PubMed ID: 30911026

Takase H, Tanaka M, Nakamura Y, Morita SY, Yamada T, Mukai T. Effects of lipid composition on the structural properties of human serum amyloid A in reconstituted high-density lipoprotein particles. Chem Phys Lipids. 2019 Mar 2;221:8-14. doi: 10.1016/j.chemphyslip.2019.03.001. [Epub ahead of print]

PubMed ID: 30836067

Balleza D, Mescola A, Marín-Medina N, Ragazzini G, Pieruccini M, Facci P, Alessandrini A. Complex Phase Behavior of GUVs Containing Different Sphingomyelins. Biophys J. 2019 Feb 5;116(3):503-517. doi: 10.1016/j.bpj.2018.12.018. Epub 2019 Jan 3.

PubMed ID: 30665697

Tran HT, Anderson LH, Knight JD. Membrane-Binding Cooperativity and Coinsertion by C2AB Tandem Domains of Synaptotagmins 1 and 7. Biophys J. 2019 Mar 19;116(6):1025-1036. doi: 10.1016/j.bpj.2019.01.035. Epub 2019 Feb 5.

PubMed ID: 30795874

Huang G, Voet A, Maglia G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat Commun. 2019 Feb 19;10(1):835. doi: 10.1038/s41467-019-08761-6.

PubMed ID: 30783102

Prince A, Tiwari A, Ror P, Sandhu P, Roy J, Jha S, Mallick B, Akhter Y, Saleem M. Attenuation of neuroblastoma cell growth by nisin is mediated by modulation of phase behavior and enhanced cell membrane fluidity. Phys Chem Chem Phys. 2019 Jan 23;21(4):1980-1987. doi: 10.1039/c8cp06378h.

PubMed ID: 30633257

Witkos TM, Chan WL, Joensuu M, Rhiel M, Pallister E, Thomas-Oates J, Mould AP, Mironov AA, Biot C, Guerardel Y, Morelle W, Ungar D, Wieland FT, Jokitalo E, Tassabehji M, Kornak U, Lowe M. GORAB scaffolds COPI at the trans-Golgi for efficient enzyme recycling and correct protein glycosylation. Nat Commun. 2019 Jan 10;10(1):127. doi: 10.1038/s41467-018-08044-6.

PubMed ID: 30631079

Tsai WC, Feigenson GW. Lowering line tension with high cholesterol content induces a transition from macroscopic to nanoscopic phase domains in model biomembranes. Biochim Biophys Acta Biomembr. 2019 Feb 1;1861(2):478-485. doi: 10.1016/j.bbamem.2018.11.010. Epub 2018 Dec 5.

PubMed ID: 30529459

Tomokazu Yasuda, J. Peter Slotte, and Michio Murata. Nanosized Phase Segregation of Sphingomyelin and Dihydrosphingomyelin in Unsaturated Phosphatidylcholine Binary Membranes without Cholesterol. Langmuir, Just Accepted Manuscript. DOI: 10.1021/acs.langmuir.8b02637. Publication Date (Web): October 16, 2018

PubMed ID: 30350701

Yano Y, Hanashima S, Yasuda T, Tsuchikawa H, Matsumori N, Kinoshita M, Al Sazzad MA, Slotte JP, Murata M. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation. Biophys J. 2018 Oct 16;115(8):1530-1540. doi: 10.1016/j.bpj.2018.08.042. Epub 2018 Sep 7.

PubMed ID: 30274830

Wang Q, London E. Lipid Structure and Composition Control Consequences of Interleaflet Coupling in Asymmetric Vesicles. Biophys J. 2018 Jul 19. pii: S0006-3495(18)30814-2. doi: 10.1016/j.bpj.2018.07.011. [Epub ahead of print]

PubMed ID: 30082033

Vezočnik V, Hodnik V, Sitar S, Okur HI, Tušek-Žnidarič M, Lütgebaucks C, Sepčić K, Kogej K, Roke S, Žagar E, Maček P. Kinetically Stable Triglyceride-Based Nanodroplets and Their Interactions with Lipid-Specific Proteins. Langmuir. 2018 Jul 19. doi: 10.1021/acs.langmuir.8b02180. [Epub ahead of print]

PubMed ID: 29983071

Ausili A, Martinez Valera P, Torrecillas A, Gómez-Murcia V, deGodos AM, Corbalan-Garcia S, Teruel JA, Gomez-Fernandez JC. The anticancer agent edelfosine exhibits a high affinity for cholesterol and disorganizes liquid ordered membrane structures. Langmuir. 2018 Jun 20. doi: 10.1021/acs.langmuir.8b01539. [Epub ahead of print]

PubMed ID: 29924618

Widder K, Träger J, Kerth A, Harauz G, Hinderberger D. Interaction of myelin basic protein with myelin-like lipid monolayers at the air-water interface. Langmuir. 2018 May 3. doi: 10.1021/acs.langmuir.8b00321.

PubMed ID: 29722987

James Kurniawan, João Ventrici, Gregory Kittleson and Tonya L. Kuhl Interaction Forces between Lipid Rafts. Langmuir. Publication Date (Web): December 21, 2016 DOI: 10.1021/acs.langmuir.6b03717 Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry, Giuseppe Paglia & Giuseppe Astarita Nature Protocols 12, 797-813 (2017) doi:10. 1038/nprot.2017.013 [PubMed]

PubMed ID: 28301461

Li G, Kim J, Huang Z, St Clair JR, Brown DA, London E. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14025-14030. Epub 2016 Nov 21.

PubMed ID: 27872310

This Natural Lipid is a mixture and the structure shown above is only representative of one possible structure present in the product. Refer to chart for average fatty acid distribution.