860061 | Egg SM

Sphingomyelin (Egg, Chicken)


Chloroform

Size SKU Packaging Price
25mg 860061C-25mg 860061C-25mg 1 x 25mg 10mg/mL 2.5mL $127.00
200mg 860061C-200mg 860061C-200mg 2 x 100mg 25mg/mL 4mL $254.00

Powder

Size SKU Packaging Price
25mg 860061P-25mg 860061P-25mg 1 x 25mg $127.00
200mg 860061P-200mg 860061P-200mg 1 x 200mg $254.00
1g 860061P-1g 860061P-1g 1 x 1g $620.00
Base Price: ${originalprice|money}
Custom Packaging: (${concentration} @$4.00/ea. + $100) ${custompackagingtotal|money}
Packaging: ${concentration}
Item Total: ${totalprice|money}
Please select an option above.
${sku} - ${concentration}

Egg SM

Egg SM

Sphingomyelin (Egg, Chicken)

As a major constituent of cell membranes, sphingomyelin is found at particularly high concentrations in the membranes of nerve cells (in the myelin sheaths) and red blood cells. It was previously thought to have a purely structural role, similar to the function of phosphatidylcholine, through intermolecular interactions mediated by the 2-amide group, the 3-hydroxy group and the 4,5-trans double bond of the sphingoid base1. However, it is now appreciated that sphingomyelin has a high affinity for cholesterol and that these two lipids pack tightly into liquid-ordered domains among a liquid-disordered phase to form lipid rafts1,2. These membrane microdomains are thought to function as signaling platforms that regulate the localization and interactions of proteins. But sphingomyelin does not just influence signaling as a component of lipid rafts — it is also a precursor to ceramides and other sphingolipid metabolites that comprise the sphingomyelin cycle or sphingolipid network1,2.
1. Christie, W.W. Sphingomyelin and related lipids. The AOCS Lipid Library.
2. Milhas, D., Clarke, C.J. & Hannun, Y.A. Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett. 584, 1887-1894 (2010). [PubMed]
Hygroscopic
No
Light Sensitive
No
Purity
>99%
Stability
1 Years
Storage Temperature
-20°C
CAS Number
383907-87-7
CAS Registry Number is a Registered Trademark of the American Chemical Society
Formula Weight
710.965
Exact Mass
0.000
Synonyms
<p>16:0 SMHexadecanoyl SphingomyelinN-hexadecanoyl-D-erythro-sphingosylphosphorylcholineN-(hexadecanoyl)-sphing-4-enine-1-phosphocholine</p>

Robinson T, Dittrich PS. Observations of membrane domain reorganization in mechanically compressed artificial cells. Chembiochem. 2019 May 14. doi: 10.1002/cbic.201900167. [Epub ahead of print]

PubMed ID: 31087814

Millar CL, Norris GH, Vitols A, Garcia C, Seibel S, Anto L, Blesso CN. Dietary Egg Sphingomyelin Prevents Aortic Root Plaque Accumulation in Apolipoprotein-E Knockout Mice. Nutrients. 2019 May 21;11(5). pii: E1124. doi: 10.3390/nu11051124.

PubMed ID: 31117179

Palacios-Ortega J, García-Linares S, Rivera-de-Torre E, Gavilanes JG, Martínez-Del-Pozo Á, Slotte JP. Sticholysin, Sphingomyelin, and Cholesterol: A Closer Look at a Tripartite Interaction. Biophys J. 2019 Jun 18;116(12):2253-2265. doi: 10.1016/j.bpj.2019.05.010. Epub 2019 May 16.

PubMed ID: 31146924

Watanabe N, Suga K, Slotte JP, Nyholm TKM, Umakoshi H. Lipid-Surrounding Water Molecules Probed by Time-Resolved Emission Spectra of Laurdan. Langmuir. 2019 May 21;35(20):6762-6770. doi: 10.1021/acs.langmuir.9b00303. Epub 2019 May 8.

PubMed ID: 31021095

Verstraeten SL, Deleu M, Janikowska-Sagan M, Claereboudt EJS, Lins L, Tyteca D, Mingeot-Leclercq MP. The activity of the saponin ginsenoside Rh2 is enhanced by the interaction with membrane sphingomyelin but depressed by cholesterol. Sci Rep. 2019 May 13;9(1):7285. doi: 10.1038/s41598-019-43674-w.

PubMed ID: 31086211

Wagle S, Georgiev VN, Robinson T, Dimova R, Lipowsky R, Grafmüller A. Interaction of SNARE Mimetic Peptides with Lipid bilayers: Effects of Secondary Structure, Bilayer Composition and Lipid Anchoring. Sci Rep. 2019 May 22;9(1):7708. doi: 10.1038/s41598-019-43418-w.

PubMed ID: 31118479

Patel H, Ding B, Ernst K, Shen L, Yuan W, Tang J, Drake LR, Kang J, Li Y, Chen Z, Schwendeman A. Characterization of apolipoprotein A-I peptide phospholipid interaction and its effect on HDL nanodisc assembly. Int J Nanomedicine. 2019 Apr 30;14:3069-3086. doi: 10.2147/IJN.S179837. eCollection 2019.

PubMed ID: 31118623

Lemma T, Ruiz GCM, Oliveira ON Jr, Constantino CJL. Disruption of giant unilamellar vesicles mimicking cell membranes induced by the pesticides glyphosate and picloram. Biophys Chem. 2019 Jul;250:106176. doi: 10.1016/j.bpc.2019.106176. Epub 2019 Apr 26.

PubMed ID: 31055199

Milard M, Penhoat A, Durand A, Buisson C, Loizon E, Meugnier E, Bertrand K, Joffre F, Cheillan D, Garnier L, Viel S, Laugerette F, Michalski MC. Acute effects of milk polar lipids on intestinal tight junction expression: towards an impact of sphingomyelin through the regulation of IL-8 secretion? J Nutr Biochem. 2019 Mar;65:128-138. doi: 10.1016/j.jnutbio.2018.12.007. Epub 2018 Dec 21.

PubMed ID: 30685581

Chen CH, Starr CG, Troendle E, Wiedman G, Wimley WC, Ulmschneider JP, Ulmschneider MB. Simulation-Guided Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide. J Am Chem Soc. 2019 Mar 27;141(12):4839-4848. doi: 10.1021/jacs.8b11939. Epub 2019 Mar 13.

PubMed ID: 30839209

Alvarado-Mesén J, Solano-Campos F, Canet L, Pedrera L, Hervis YP, Soto C, Borbón H, Lanio ME, Lomonte B, Valle A, Alvarez C. Cloning, purification and characterization of nigrelysin, a novel actinoporin from the sea anemone Anthopleura nigrescens. Biochimie. 2019 Jan;156:206-223. doi: 10.1016/j.biochi.2018.07.013. Epub 2018 Jul 21.

PubMed ID: 30036605

Nyholm TKM, Jaikishan S, Engberg O, Hautala V, Slotte JP. The Affinity of Sterols for Different Phospholipid Classes and Its Impact on Lateral Segregation. Biophys J. 2019 Jan 22;116(2):296-307. doi: 10.1016/j.bpj.2018.11.3135. Epub 2018 Dec 6.

PubMed ID: 30583790

Balleza D, Mescola A, Marín-Medina N, Ragazzini G, Pieruccini M, Facci P, Alessandrini A. Complex Phase Behavior of GUVs Containing Different Sphingomyelins. Biophys J. 2019 Feb 5;116(3):503-517. doi: 10.1016/j.bpj.2018.12.018. Epub 2019 Jan 3.

PubMed ID: 30665697

Watanabe N, Goto Y, Suga K, Nyholm TKM, Slotte JP, Umakoshi H. Solvatochromic Modeling of Laurdan for Multiple Polarity Analysis of Dihydrosphingomyelin Bilayer. Biophys J. 2019 Mar 5;116(5):874-883. doi: 10.1016/j.bpj.2019.01.030. Epub 2019 Feb 1.

PubMed ID: 30819567

Lipiec E, Wnętrzak A, Chachaj-Brekiesz A, Kwiatek W, Dynarowicz-Latka P. High-resolution label-free studies of molecular distribution and orientation in ultrathin, multicomponent model membranes with infrared nano-spectroscopy AFM-IR. J Colloid Interface Sci. 2019 Apr 15;542:347-354. doi: 10.1016/j.jcis.2019.02.016. Epub 2019 Feb 6.

PubMed ID: 30769257

Ho JCS, Steininger C, Hiew SH, Kim MC, Reimhult E, Miserez A, Cho N, Parikh AN, Liedberg B. Minimal Reconstitution of Membranous Web Induced by a Vesicle-Peptide Sol-Gel Transition. Biomacromolecules. 2019 Mar 26. doi: 10.1021/acs.biomac.9b00081. [Epub ahead of print]

PubMed ID: 30856330

Matsufuji T, Kinoshita M, Matsumori N. Preparation and Membrane Distribution of Fluorescent Derivatives of Ceramide. Langmuir. 2019 Feb 12;35(6):2392-2398. doi: 10.1021/acs.langmuir.8b03176. Epub 2019 Jan 22.

PubMed ID: 30608698

Milard M, Penhoat A, Durand A, Buisson C, Loizon E, Meugnier E, Bertrand K, Joffre F, Cheillan D, Garnier L, Viel S, Laugerette F, Michalski MC. Acute effects of milk polar lipids on intestinal tight junction expression: towards an impact of sphingomyelin through the regulation of IL-8 secretion?. J Nutr Biochem. 2018 Dec 21;65:128-138. doi: 10.1016/j.jnutbio.2018.12.007. [Epub ahead of print]

PubMed ID: 30685581

Song D, Meng J, Cheng J, Fan Z, Chen P, Ruan H, Tu Z, Kang N, Li N, Xu Y, Wang X, Shu F, Mu L, Li T, Ren W, Lin X, Zhu J, Fang X, Amrein MW, Wu W, Yan LT, Lü J, Xia T, Shi Y. Pseudomonas aeruginosa quorum-sensing metabolite induces host immune cell death through cell surface lipid domain dissolution. Nat Microbiol. 2019 Jan;4(1):97-111. doi: 10.1038/s41564-018-0290-8. Epub 2018 Dec 3.

PubMed ID: 30510173

Mouts A, Vattulainen E, Matsufuji T, Kinoshita M, Matsumori N, Slotte JP. On the importance of the C(1)-OH and C(3)-OH functional groups of the long-chain base of ceramide for interlipid interaction and lateral segregation into ceramide-rich domains. Langmuir. 2018 Dec 3. doi: 10.1021/acs.langmuir.8b03237. [Epub ahead of print].

PubMed ID: 30507134

Nyholm TKM, Jaikishan S, Engberg O, Hautala V, Slotte JP. The Affinity of Sterols for Different Phospholipid Classes and Its Impact on Lateral Segregation. Biophys J. 2019 Jan 22;116(2):296-307. doi: 10.1016/j.bpj.2018.11.3135. Epub 2018 Dec 6.

PubMed ID: 30583790

Matsufuji T, Kinoshita M, Matsumori N. Preparation and Membrane Distribution of Fluorescent Derivatives of Ceramide. Langmuir. 2019 Jan 4. doi: 10.1021/acs.langmuir.8b03176. [Epub ahead of print]

PubMed ID: 30608698

Matsufuji T, Kinoshita M, Matsumori N. Preparation and Membrane Distribution of Fluorescent Derivatives of Ceramide. Langmuir. 2019 Jan 4. doi: 10.1021/acs.langmuir.8b03176. [Epub ahead of print]

PubMed ID: 30608698

Mouts A, Vattulainen E, Matsufuji T, Kinoshita M, Matsumori N, Slotte JP. On the importance of the C(1)-OH and C(3)-OH functional groups of the long-chain base of ceramide for interlipid interaction and lateral segregation into ceramide-rich domains. Langmuir 2018, 34, 51, 15864-15870.

PubMed ID: 30507134

Ma Y, Benda A, Kwiatek J, Owen DM, Gaus K. Time-Resolved Laurdan Fluorescence Reveals Insights into Membrane Viscosity and Hydration Levels. Biophys J. 2018 Oct 16;115(8):1498-1508. doi: 10.1016/j.bpj.2018.08.041. Epub 2018 Sep 6.

PubMed ID: 30269886

Shell Ip, Christina MacLaughlin, Michelle Joseph, Nisa Mullauthilaga, Guisheng Yang, Chen Wang, and Gilbert C Walker.Dual-mode dark field and surface enhanced Raman scattering liposomes for lymphoma and leukemia cell imaging. Langmuir, Just Accepted Manuscript. DOI: 10.1021/acs.langmuir.8b02313. Publication Date (Web): October 11, 2018


Wang Q, London E. Lipid Structure and Composition Control Consequences of Interleaflet Coupling in Asymmetric Vesicles. Biophys J. 2018 Jul 19. pii: S0006-3495(18)30814-2. doi: 10.1016/j.bpj.2018.07.011. [Epub ahead of print]

PubMed ID: 30082033

Parkkila P, Elderdfi M, Bunker A, Viitala T. Biophysical Characterization of Supported Lipid Bilayers Using Parallel Dual-Wavelength Surface Plasmon Resonance and Quartz Crystal Microbalance Measurements. Langmuir. 2018 Jun 25. doi: 10.1021/acs.langmuir.8b01259. [Epub ahead of print]

PubMed ID: 29894192

Parkkila P, Elderdfi M, Bunker A, Viitala T. Biophysical Characterization of Supported Lipid Bilayers Using Parallel Dual-Wavelength Surface Plasmon Resonance and Quartz Crystal Microbalance Measurements. Langmuir. 2018 Jun 25. doi: 10.1021/acs.langmuir.8b01259. [Epub ahead of print]

PubMed ID: 29894192

Parkkila P, Elderdfi M, Bunker A, Viitala T. Biophysical characterization of supported lipid bilayers using parallel dual-wavelength surface plasmon resonance and quartz crystal microbalance measurements. Langmuir. 2018 Jun 12. doi: 10.1021/acs.langmuir.8b01259. [Epub ahead of print]

PubMed ID: 29894192

Lonnfors, M., O. Langvik, A. Bjorkbom, and J.P. Slotte. (2013). Cholesteryl Phosphocholine - A Study on Its Interactions with Ceramides and Other Membrane Lipids. Langmuir

PubMed ID: 23356741

Preferential Adsorption of l-Histidine onto DOPC/Sphingomyelin/3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol Liposomes in the Presence of Chiral Organic Acids Keishi Suga, Atsushi Tauchi, Takaaki Ishigami, Yukihiro Okamoto, and Hiroshi Umakoshi* Langmuir, Article ASAP

PubMed ID: 28272888

Matsufuji T, Kinoshita M, Möuts A, Slotte JP, Matsumori N Preparation and Membrane Properties of Oxidized Ceramide Derivatives. Langmuir. 2017 Dec 27. doi: 10.1021/acs.langmuir.7b02654.

PubMed ID: 29231736

Li G, Kim J, Huang Z, St Clair JR, Brown DA, London E. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14025-14030. Epub 2016 Nov 21.

PubMed ID: 27872310

Peñalva DA, Antollini S, Ambroggio E, Aveldaño MI, Fanani ML. MEMBRANE RESTRUCTURING EVENTS DURING THE ENZYMATIC GENERATION OF CERAMIDES WITH VERY LONG-CHAIN POLYUNSATURATED FATTY ACIDS. Langmuir. 2018 Mar 15. doi: 10.1021/acs.langmuir.7b04374. [Epub ahead of print]

PubMed ID: 29540057

This Natural Lipid is a mixture and the structure shown above is only representative of one possible structure present in the product. Refer to chart for average fatty acid distribution.
860061FattyAcidDistribution.gif