860061 | Egg SM

Sphingomyelin (Egg, Chicken)


Chloroform

Size SKU Packaging Price
25mg 860061C-25mg 860061C-25mg 1 x 25mg 10mg/mL 2.5mL $136.75
200mg 860061C-200mg 860061C-200mg 2 x 100mg 25mg/mL 4mL $274.00

Powder

Size SKU Packaging Price
25mg 860061P-25mg 860061P-25mg 1 x 25mg $136.75
200mg 860061P-200mg 860061P-200mg 1 x 200mg $274.00
1g 860061P-1g 860061P-1g 1 x 1g $670.00
Base Price: ${originalprice|money}
Custom Packaging: (${concentration} @$4.00/ea. + $100) ${custompackagingtotal|money}
Packaging: ${concentration}
Item Total: ${totalprice|money}
(Sales Tax may apply)
Please select an option above.
${sku} - ${concentration}

Egg SM

Egg SM

Sphingomyelin (Egg, Chicken)

As a major constituent of cell membranes, sphingomyelin is found at particularly high concentrations in the membranes of nerve cells (in the myelin sheaths) and red blood cells. It was previously thought to have a purely structural role, similar to the function of phosphatidylcholine, through intermolecular interactions mediated by the 2-amide group, the 3-hydroxy group and the 4,5-trans double bond of the sphingoid base1. However, it is now appreciated that sphingomyelin has a high affinity for cholesterol and that these two lipids pack tightly into liquid-ordered domains among a liquid-disordered phase to form lipid rafts1,2. These membrane microdomains are thought to function as signaling platforms that regulate the localization and interactions of proteins. But sphingomyelin does not just influence signaling as a component of lipid rafts — it is also a precursor to ceramides and other sphingolipid metabolites that comprise the sphingomyelin cycle or sphingolipid network1,2.
1. Christie, W.W. Sphingomyelin and related lipids. The AOCS Lipid Library.
2. Milhas, D., Clarke, C.J. & Hannun, Y.A. Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett. 584, 1887-1894 (2010). [PubMed]
Hygroscopic
No
Light Sensitive
No
Purity
>99%
Stability
1 Years
Storage Temperature
-20°C
CAS Number
383907-87-7
CAS Registry Number is a Registered Trademark of the American Chemical Society
Formula Weight
710.965
Exact Mass
0.000
Synonyms
16:0 SM
Hexadecanoyl Sphingomyelin
N-hexadecanoyl-D-erythro-sphingosylphosphorylcholine
N-(hexadecanoyl)-sphing-4-enine-1-phosphocholine

Doktorova M, Kučerka N, Kinnun JJ, Pan J, Marquardt D, Scott HL, Venable RM, Pastor RW, Wassall SR, Katsaras J, Heberle FA. Molecular Structure of Sphingomyelin in Fluid Phase Bilayers Determined by the Joint Analysis of Small-Angle Neutron and X-ray Scattering Data. J Phys Chem B. 2020 Jun 25;124(25):5186-5200. doi: 10.1021/acs.jpcb.0c03389. Epub 2020 Jun 16. PMID: 32468822.

PubMed ID: 32468822

Gironi B, Kahveci Z, McGill B, Lechner BD, Pagliara S, Metz J, Morresi A, Palombo F, Sassi P, Petrov PG. Effect of DMSO on the Mechanical and Structural Properties of Model and Biological Membranes. Biophys J. 2020 Jul 21;119(2):274-286. doi: 10.1016/j.bpj.2020.05.037. Epub 2020 Jun 15. PMID: 32610089; PMCID: PMC7376087.

PubMed ID: 32610089

Bansal S, Su WC, Budamagunta M, Xiao W, Ajena Y, Liu R, Voss JC, Carney RP, Parikh AN, Lam KS. Discovery and mechanistic characterization of a structurally-unique membrane active peptide. Biochim Biophys Acta Biomembr. 2020 Oct 1;1862(10):183394. doi: 10.1016/j.bbamem.2020.183394. Epub 2020 Jun 18. PMID: 32562695.

PubMed ID: 32562695

Cavazos AT, Kinnun JJ, Williams JA, Wassall SR. Vitamin E - Phosphatidylethanolamine interactions in mixed membranes with sphingomyelin: Studies by 2H NMR. Chem Phys Lipids. 2020 May 31:104910. doi: 10.1016/j.chemphyslip.2020.104910. Epub ahead of print. PMID: 32492380.

PubMed ID: 32492380

Palacios-Ortega J, Rivera-de-Torre E, Gavilanes JG, Slotte JP, Martínez-Del-Pozo Á. Evaluation of different approaches used to study membrane permeabilization by actinoporins on model lipid vesicles. Biochim Biophys Acta Biomembr. 2020 Apr 27;1862(9):183311. doi: 10.1016/j.bbamem.2020.183311. Epub ahead of print. PMID: 32353378.

PubMed ID: 32353378

Chen ZJ, Yang SC, Liu XL, Gao Y, Dong X, Lai X, Zhu MH, Feng HY, Zhu XD, Lu Q, Zhao M, Chen HZ, Lovell JF, Fang C. Nanobowl-Supported Liposomes Improve Drug Loading and Delivery. Nano Lett. 2020 May 20. doi: 10.1021/acs.nanolett.0c00495. Epub ahead of print. PMID: 32431154.

PubMed ID: 32431154

Parkkila P, Viitala T. Partitioning of Catechol Derivatives in Lipid Membranes: Implications for Substrate Specificity to Catechol-O-methyltransferase. ACS Chem Neurosci. 2020 Mar 18;11(6):969-978. doi: 10.1021/acschemneuro.0c00049. Epub 2020 Mar 5. PMID: 32101397; PMCID: PMC7145343.

PubMed ID: 32101397

Ahyayauch H, de la Arada I, Masserini ME, Arrondo JLR, Goñi FM, Alonso A. The Binding of Aβ42 Peptide Monomers to Sphingomyelin/Cholesterol/Ganglioside Bilayers Assayed by Density Gradient Ultracentrifugation. Int J Mol Sci. 2020 Feb 29;21(5):1674. doi: 10.3390/ijms21051674. PMID: 32121399; PMCID: PMC7084322.

PubMed ID: 32121399

Scheetz LM, Yu M, Li D, Castro MG, Moon JJ, Schwendeman A. Synthetic HDL Nanoparticles Delivering Docetaxel and CpG for Chemoimmunotherapy of Colon Adenocarcinoma. Int J Mol Sci. 2020 Mar 5;21(5):1777. doi: 10.3390/ijms21051777. PMID: 32150841; PMCID: PMC7084365.

PubMed ID: 32150841

Puff N, Staneva G, Angelova MI, Seigneuret M. Improved Characterization of Raft-Mimicking Phase-Separation Phenomena in Lipid Bilayers Using Laurdan Fluorescence with Log-Normal Multipeak Analysis. Langmuir. 2020 Apr 13. doi: 10.1021/acs.langmuir.0c00412. Epub ahead of print. PMID: 32233510.

PubMed ID: 32233510

Rickeard BW , Nguyen MHL , DiPasquale M , Yip CG , Baker H , Heberle FA , Zuo X , Kelley EG , Nagao M , Marquardt D . Transverse lipid organization dictates bending fluctuations in model plasma membranes. Nanoscale. 2020 Jan 23;12(3):1438-1447. doi: 10.1039/c9nr07977g. PMID: 31746906.

PubMed ID: 31746906

Zanabria R, Griffiths MW, Corredig M. Does structure affect biological function? Modifications to the protein and phospholipids fraction of the milk fat globule membrane after extraction affect the antiproliferative activity of colon cancer cells. J Food Biochem. 2019 Dec 6;e13104. doi: 10.1111/jfbc.13104. [Epub ahead of print]. PMID: 31808955.

PubMed ID: 31808955

Munguira NLB, Barbas A, Casuso I. The activity of the pore-forming toxin lysenin is regulated by crowding. Nanotechnology. 2019 Dec 4;10.1088/1361-6528/ab5e63. doi: 10.1088/1361-6528/ab5e63. [Epub ahead of print]. PMID: 31796658.

PubMed ID: 31796658

Carravilla P, Darré L, Oar-Arteta IR, Vesga AG, Rujas E, de Las Heras-Martínez G, Domene C, Nieva JL, Requejo-Isidro J. The Bilayer Collective Properties Govern the Interaction of an HIV-1 Antibody with the Viral Membrane. Biophys J. 2020 Jan 7;118(1):44-56. doi: 10.1016/j.bpj.2019.11.005. Epub 2019 Nov 14. PMID: 31787208; PMCID: PMC6950647.

PubMed ID: 31787208

Fitzgerald BL, Molins CR, Islam MN, Graham B, Hove PR, Wormser GP, Hu L, Ashton LV, Belisle JT. Host Metabolic Response in Early Lyme Disease. J Proteome Res. 2020 Jan 9;10.1021/acs.jproteome.9b00470. doi: 10.1021/acs.jproteome.9b00470. [Epub ahead of print]. PMID: 31821002.

PubMed ID: 31821002

Cardoso RMS, Martins PAT, Ramos CV, Cordeiro MM, Leote RJB, Razi Naqvi K, Vaz WLC, Moreno MJ. Effect of dipole moment on amphiphile solubility and partition into liquid ordered and liquid disordered phases in lipid bilayers. Biochim Biophys Acta Biomembr. 2020 Mar 1;1862(3):183157. doi: 10.1016/j.bbamem.2019.183157. Epub 2019 Dec 15. PMID: 31846646.

PubMed ID: 31846646

Kulkarni JA, Witzigmann D, Leung J, Tam YYC, Cullis PR. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale. 2019 Nov 21;11(45):21733-21739. doi: 10.1039/c9nr09347h.

PubMed ID: 31713568

Kinnebrew M, Iverson EJ, Patel BB, Pusapati GV, Kong JH, Johnson KA, Luchetti G, Eckert KM, McDonald JG, Covey DF, Siebold C, Radhakrishnan A, Rohatgi R. Cholesterol accessibility at the ciliary membrane controls hedgehog signaling. Elife. 2019 Oct 30;8. pii: e50051. doi: 10.7554/eLife.50051.

PubMed ID: 31657721

Regan D, Williams J, Borri P, Langbein W. Lipid Bilayer Thickness Measured by Quantitative DIC Reveals Phase Transitions and Effects of Substrate Hydrophilicity. Langmuir. 2019 Oct 29;35(43):13805-13814. doi: 10.1021/acs.langmuir.9b02538. Epub 2019 Oct 14.

PubMed ID: 31483674

Robinson T, Dittrich PS. Observations of membrane domain reorganization in mechanically compressed artificial cells. Chembiochem. 2019 May 14. doi: 10.1002/cbic.201900167. [Epub ahead of print]

PubMed ID: 31087814

Millar CL, Norris GH, Vitols A, Garcia C, Seibel S, Anto L, Blesso CN. Dietary Egg Sphingomyelin Prevents Aortic Root Plaque Accumulation in Apolipoprotein-E Knockout Mice. Nutrients. 2019 May 21;11(5). pii: E1124. doi: 10.3390/nu11051124.

PubMed ID: 31117179

Palacios-Ortega J, García-Linares S, Rivera-de-Torre E, Gavilanes JG, Martínez-Del-Pozo Á, Slotte JP. Sticholysin, Sphingomyelin, and Cholesterol: A Closer Look at a Tripartite Interaction. Biophys J. 2019 Jun 18;116(12):2253-2265. doi: 10.1016/j.bpj.2019.05.010. Epub 2019 May 16.

PubMed ID: 31146924

Watanabe N, Suga K, Slotte JP, Nyholm TKM, Umakoshi H. Lipid-Surrounding Water Molecules Probed by Time-Resolved Emission Spectra of Laurdan. Langmuir. 2019 May 21;35(20):6762-6770. doi: 10.1021/acs.langmuir.9b00303. Epub 2019 May 8.

PubMed ID: 31021095

Verstraeten SL, Deleu M, Janikowska-Sagan M, Claereboudt EJS, Lins L, Tyteca D, Mingeot-Leclercq MP. The activity of the saponin ginsenoside Rh2 is enhanced by the interaction with membrane sphingomyelin but depressed by cholesterol. Sci Rep. 2019 May 13;9(1):7285. doi: 10.1038/s41598-019-43674-w.

PubMed ID: 31086211

Wagle S, Georgiev VN, Robinson T, Dimova R, Lipowsky R, Grafmüller A. Interaction of SNARE Mimetic Peptides with Lipid bilayers: Effects of Secondary Structure, Bilayer Composition and Lipid Anchoring. Sci Rep. 2019 May 22;9(1):7708. doi: 10.1038/s41598-019-43418-w.

PubMed ID: 31118479

Patel H, Ding B, Ernst K, Shen L, Yuan W, Tang J, Drake LR, Kang J, Li Y, Chen Z, Schwendeman A. Characterization of apolipoprotein A-I peptide phospholipid interaction and its effect on HDL nanodisc assembly. Int J Nanomedicine. 2019 Apr 30;14:3069-3086. doi: 10.2147/IJN.S179837. eCollection 2019.

PubMed ID: 31118623

Lemma T, Ruiz GCM, Oliveira ON Jr, Constantino CJL. Disruption of giant unilamellar vesicles mimicking cell membranes induced by the pesticides glyphosate and picloram. Biophys Chem. 2019 Jul;250:106176. doi: 10.1016/j.bpc.2019.106176. Epub 2019 Apr 26.

PubMed ID: 31055199

Milard M, Penhoat A, Durand A, Buisson C, Loizon E, Meugnier E, Bertrand K, Joffre F, Cheillan D, Garnier L, Viel S, Laugerette F, Michalski MC. Acute effects of milk polar lipids on intestinal tight junction expression: towards an impact of sphingomyelin through the regulation of IL-8 secretion? J Nutr Biochem. 2019 Mar;65:128-138. doi: 10.1016/j.jnutbio.2018.12.007. Epub 2018 Dec 21.

PubMed ID: 30685581

Chen CH, Starr CG, Troendle E, Wiedman G, Wimley WC, Ulmschneider JP, Ulmschneider MB. Simulation-Guided Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide. J Am Chem Soc. 2019 Mar 27;141(12):4839-4848. doi: 10.1021/jacs.8b11939. Epub 2019 Mar 13.

PubMed ID: 30839209

Alvarado-Mesén J, Solano-Campos F, Canet L, Pedrera L, Hervis YP, Soto C, Borbón H, Lanio ME, Lomonte B, Valle A, Alvarez C. Cloning, purification and characterization of nigrelysin, a novel actinoporin from the sea anemone Anthopleura nigrescens. Biochimie. 2019 Jan;156:206-223. doi: 10.1016/j.biochi.2018.07.013. Epub 2018 Jul 21.

PubMed ID: 30036605

Nyholm TKM, Jaikishan S, Engberg O, Hautala V, Slotte JP. The Affinity of Sterols for Different Phospholipid Classes and Its Impact on Lateral Segregation. Biophys J. 2019 Jan 22;116(2):296-307. doi: 10.1016/j.bpj.2018.11.3135. Epub 2018 Dec 6.

PubMed ID: 30583790

Balleza D, Mescola A, Marín-Medina N, Ragazzini G, Pieruccini M, Facci P, Alessandrini A. Complex Phase Behavior of GUVs Containing Different Sphingomyelins. Biophys J. 2019 Feb 5;116(3):503-517. doi: 10.1016/j.bpj.2018.12.018. Epub 2019 Jan 3.

PubMed ID: 30665697

Watanabe N, Goto Y, Suga K, Nyholm TKM, Slotte JP, Umakoshi H. Solvatochromic Modeling of Laurdan for Multiple Polarity Analysis of Dihydrosphingomyelin Bilayer. Biophys J. 2019 Mar 5;116(5):874-883. doi: 10.1016/j.bpj.2019.01.030. Epub 2019 Feb 1.

PubMed ID: 30819567

Lipiec E, Wnętrzak A, Chachaj-Brekiesz A, Kwiatek W, Dynarowicz-Latka P. High-resolution label-free studies of molecular distribution and orientation in ultrathin, multicomponent model membranes with infrared nano-spectroscopy AFM-IR. J Colloid Interface Sci. 2019 Apr 15;542:347-354. doi: 10.1016/j.jcis.2019.02.016. Epub 2019 Feb 6.

PubMed ID: 30769257

Ho JCS, Steininger C, Hiew SH, Kim MC, Reimhult E, Miserez A, Cho N, Parikh AN, Liedberg B. Minimal Reconstitution of Membranous Web Induced by a Vesicle-Peptide Sol-Gel Transition. Biomacromolecules. 2019 Mar 26. doi: 10.1021/acs.biomac.9b00081. [Epub ahead of print]

PubMed ID: 30856330

Matsufuji T, Kinoshita M, Matsumori N. Preparation and Membrane Distribution of Fluorescent Derivatives of Ceramide. Langmuir. 2019 Feb 12;35(6):2392-2398. doi: 10.1021/acs.langmuir.8b03176. Epub 2019 Jan 22.

PubMed ID: 30608698

Milard M, Penhoat A, Durand A, Buisson C, Loizon E, Meugnier E, Bertrand K, Joffre F, Cheillan D, Garnier L, Viel S, Laugerette F, Michalski MC. Acute effects of milk polar lipids on intestinal tight junction expression: towards an impact of sphingomyelin through the regulation of IL-8 secretion?. J Nutr Biochem. 2018 Dec 21;65:128-138. doi: 10.1016/j.jnutbio.2018.12.007. [Epub ahead of print]

PubMed ID: 30685581

Song D, Meng J, Cheng J, Fan Z, Chen P, Ruan H, Tu Z, Kang N, Li N, Xu Y, Wang X, Shu F, Mu L, Li T, Ren W, Lin X, Zhu J, Fang X, Amrein MW, Wu W, Yan LT, Lü J, Xia T, Shi Y. Pseudomonas aeruginosa quorum-sensing metabolite induces host immune cell death through cell surface lipid domain dissolution. Nat Microbiol. 2019 Jan;4(1):97-111. doi: 10.1038/s41564-018-0290-8. Epub 2018 Dec 3.

PubMed ID: 30510173

Mouts A, Vattulainen E, Matsufuji T, Kinoshita M, Matsumori N, Slotte JP. On the importance of the C(1)-OH and C(3)-OH functional groups of the long-chain base of ceramide for interlipid interaction and lateral segregation into ceramide-rich domains. Langmuir. 2018 Dec 3. doi: 10.1021/acs.langmuir.8b03237. [Epub ahead of print].

PubMed ID: 30507134

Nyholm TKM, Jaikishan S, Engberg O, Hautala V, Slotte JP. The Affinity of Sterols for Different Phospholipid Classes and Its Impact on Lateral Segregation. Biophys J. 2019 Jan 22;116(2):296-307. doi: 10.1016/j.bpj.2018.11.3135. Epub 2018 Dec 6.

PubMed ID: 30583790

Matsufuji T, Kinoshita M, Matsumori N. Preparation and Membrane Distribution of Fluorescent Derivatives of Ceramide. Langmuir. 2019 Jan 4. doi: 10.1021/acs.langmuir.8b03176. [Epub ahead of print]

PubMed ID: 30608698

Matsufuji T, Kinoshita M, Matsumori N. Preparation and Membrane Distribution of Fluorescent Derivatives of Ceramide. Langmuir. 2019 Jan 4. doi: 10.1021/acs.langmuir.8b03176. [Epub ahead of print]

PubMed ID: 30608698

Mouts A, Vattulainen E, Matsufuji T, Kinoshita M, Matsumori N, Slotte JP. On the importance of the C(1)-OH and C(3)-OH functional groups of the long-chain base of ceramide for interlipid interaction and lateral segregation into ceramide-rich domains. Langmuir 2018, 34, 51, 15864-15870.

PubMed ID: 30507134

Ma Y, Benda A, Kwiatek J, Owen DM, Gaus K. Time-Resolved Laurdan Fluorescence Reveals Insights into Membrane Viscosity and Hydration Levels. Biophys J. 2018 Oct 16;115(8):1498-1508. doi: 10.1016/j.bpj.2018.08.041. Epub 2018 Sep 6.

PubMed ID: 30269886

Shell Ip, Christina MacLaughlin, Michelle Joseph, Nisa Mullauthilaga, Guisheng Yang, Chen Wang, and Gilbert C Walker.Dual-mode dark field and surface enhanced Raman scattering liposomes for lymphoma and leukemia cell imaging. Langmuir, Just Accepted Manuscript. DOI: 10.1021/acs.langmuir.8b02313. Publication Date (Web): October 11, 2018


Wang Q, London E. Lipid Structure and Composition Control Consequences of Interleaflet Coupling in Asymmetric Vesicles. Biophys J. 2018 Jul 19. pii: S0006-3495(18)30814-2. doi: 10.1016/j.bpj.2018.07.011. [Epub ahead of print]

PubMed ID: 30082033

Parkkila P, Elderdfi M, Bunker A, Viitala T. Biophysical Characterization of Supported Lipid Bilayers Using Parallel Dual-Wavelength Surface Plasmon Resonance and Quartz Crystal Microbalance Measurements. Langmuir. 2018 Jun 25. doi: 10.1021/acs.langmuir.8b01259. [Epub ahead of print]

PubMed ID: 29894192

Parkkila P, Elderdfi M, Bunker A, Viitala T. Biophysical Characterization of Supported Lipid Bilayers Using Parallel Dual-Wavelength Surface Plasmon Resonance and Quartz Crystal Microbalance Measurements. Langmuir. 2018 Jun 25. doi: 10.1021/acs.langmuir.8b01259. [Epub ahead of print]

PubMed ID: 29894192

Parkkila P, Elderdfi M, Bunker A, Viitala T. Biophysical characterization of supported lipid bilayers using parallel dual-wavelength surface plasmon resonance and quartz crystal microbalance measurements. Langmuir. 2018 Jun 12. doi: 10.1021/acs.langmuir.8b01259. [Epub ahead of print]

PubMed ID: 29894192

Lonnfors, M., O. Langvik, A. Bjorkbom, and J.P. Slotte. (2013). Cholesteryl Phosphocholine - A Study on Its Interactions with Ceramides and Other Membrane Lipids. Langmuir

PubMed ID: 23356741

Preferential Adsorption of l-Histidine onto DOPC/Sphingomyelin/3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol Liposomes in the Presence of Chiral Organic Acids Keishi Suga, Atsushi Tauchi, Takaaki Ishigami, Yukihiro Okamoto, and Hiroshi Umakoshi* Langmuir, Article ASAP

PubMed ID: 28272888

Matsufuji T, Kinoshita M, Möuts A, Slotte JP, Matsumori N Preparation and Membrane Properties of Oxidized Ceramide Derivatives. Langmuir. 2017 Dec 27. doi: 10.1021/acs.langmuir.7b02654.

PubMed ID: 29231736

Li G, Kim J, Huang Z, St Clair JR, Brown DA, London E. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14025-14030. Epub 2016 Nov 21.

PubMed ID: 27872310

Peñalva DA, Antollini S, Ambroggio E, Aveldaño MI, Fanani ML. MEMBRANE RESTRUCTURING EVENTS DURING THE ENZYMATIC GENERATION OF CERAMIDES WITH VERY LONG-CHAIN POLYUNSATURATED FATTY ACIDS. Langmuir. 2018 Mar 15. doi: 10.1021/acs.langmuir.7b04374. [Epub ahead of print]

PubMed ID: 29540057

This Natural Lipid is a mixture and the structure shown above is only representative of one possible structure present in the product. Refer to chart for average fatty acid distribution.
860061FattyAcidDistribution.gif