857130 | 18:1 Lyso PA

1-oleoyl-2-hydroxy-sn-glycero-3-phosphate (sodium salt)


Powder

Size SKU Packaging Price
25mg 857130P-25mg 857130P-25mg 1 x 25mg $190.00
200mg 857130P-200mg 857130P-200mg 2 x 100mg $410.00
1g 857130P-1g 857130P-1g 1 x 1g $1,300.00

Chloroform

Size SKU Packaging Price
25mg 857130C-25mg 857130C-25mg 1 x 25mg 10mg/mL 2.5mL $190.00
200mg 857130C-200mg 857130C-200mg 2 x 100mg 25mg/mL 4mL $410.00
Base Price: ${originalprice|money}
Custom Packaging: (${concentration} @$4.00/ea. + $100) ${custompackagingtotal|money}
Packaging: ${concentration}
Item Total: ${totalprice|money}
(Sales Tax may apply)
Please select an option above.
${sku} - ${concentration}

18:1 Lyso PA

18:1 Lyso PA

1-oleoyl-2-hydroxy-sn-glycero-3-phosphate (sodium salt)

Biological responses to LPA
  • Cell Proliferation
  • Inhibition of differentiation (neuroblastoma cells, myoblasts)
  • Platelet aggregation
  • Smooth muscle contraction
  • Neurotransmitter release
  • Stress fibre formation/cell rounding/neurite retraction
  • Cell-surface-fibronectin binding
  • Tumor cell invasion
  • Chemotaxis (dictyostelium amoebae)
  • Cl--mediated membrane depolarization (fibroblasts)
  • Inhibition of connexin 43 based cell-cell communication
  • Increased tight junction permeability (brain endothelial cells)
Note: The bioactivity of LPA appears to require long (i.e., C16 to C18) acyl carbon chains of the type usually found associated with membrane lipids although optimum requirements for a single type of acyl carbon chain are not universal. The bioactivity decreases with shorter chain length. In serum, oleoyl and palmitoyl fatty acid containing LPA are the predominant species.
Hygroscopic
Yes
Light Sensitive
No
Molecular Formula
C21H40O7PNa
Percent Composition
C 55.01%, H 8.79%, Na 5.01%, O 24.43%, P 6.76%
Purity
>99% LPA; may contain up to 10% of the 2-LPA isomer
Stability
1 Year
Storage Temperature
-20°C
CAS Number
325465-93-8
CAS Registry Number is a Registered Trademark of the American Chemical Society
Formula Weight
458.502
Exact Mass
458.241
Synonyms
oleoyl lysophosphatidic acid
1-(9Z-octadecenoyl)-sn-glycero-3-phosphate (sodium salt)
PA(18:1(9Z)/0:0)
18:1 LPAo-LPA
110681

Key CC, Bishop AC, Wang X, Zhao Q, Chen GY, Quinn MA, Zhu X, Zhang Q, Parks JS. Human GDPD3 overexpression promotes liver steatosis by increasing lysophosphatidic acid production and fatty acid uptake. J Lipid Res. 2020 May 19:jlr.RA120000760. doi: 10.1194/jlr.RA120000760. Epub ahead of print. PMID: 32430316.

PubMed ID: 32430316

Cho YJ, Choi SH, Lee R, Hwang H, Rhim H, Cho IH, Kim HC, Lee JI, Hwang SH, Nah SY. Ginseng Gintonin Contains Ligands for GPR40 and GPR55. Molecules. 2020 Mar 2;25(5):1102. doi: 10.3390/molecules25051102. PMID: 32121640; PMCID: PMC7179172.

PubMed ID: 32121640

Gupta VK, Jaiswara PK, Sonker P, Rawat SG, Tiwari RK, Kumar A. Lysophosphatidic acid promotes survival of T lymphoma cells by altering apoptosis and glucose metabolism. Apoptosis. 2020 Feb;25(1-2):135-150. doi: 10.1007/s10495-019-01585-1. PMID: 31867678.

PubMed ID: 31867678

Yamada H, Mizuno S, Honda S, Takahashi D, Sakane F. Characterization of α-synuclein N-terminal domain as a novel cellular phosphatidic acid sensor. FEBS J. 2019 Nov 13. doi: 10.1111/febs.15137. [Epub ahead of print]

PubMed ID: 31722116

Antoku S, Wu W, Joseph LC, Morrow JP, Worman HJ, Gundersen GG. ERK1/2 Phosphorylation of FHOD Connects Signaling and Nuclear Positioning Alternations in Cardiac Laminopathy. Dev Cell. 2019 Dec 2;51(5):602-616.e12. doi: 10.1016/j.devcel.2019.10.023.

PubMed ID: 31794718

Antoku S, Wu W, Joseph LC, Morrow JP, Worman HJ, Gundersen GG. ERK1/2 Phosphorylation of FHOD Connects Signaling and Nuclear Positioning Alternations in Cardiac Laminopathy. Dev Cell. 2019 Dec 2;51(5):602-616.e12. doi: 10.1016/j.devcel.2019.10.023.

PubMed ID: 31794718

Ciesielska A, Hromada-Judycka A, Ziemlińska E, Kwiatkowska K. Lysophosphatidic acid up-regulates IL-10 production to inhibit TNF-α synthesis in Mϕs stimulated with LPS. J Leukoc Biol. 2019 Jul 23. doi: 10.1002/JLB.2A0918-368RR. [Epub ahead of print]

PubMed ID: 31335985

Mahajan D, Tie HC, Chen B, Lu L. Dopey1-Mon2 complex binds to dual-lipids and recruits kinesin-1 for membrane trafficking. Nat Commun. 2019 Jul 19;10(1):3218. doi: 10.1038/s41467-019-11056-5.

PubMed ID: 31324769

Tabbai S, Moreno-Fernández RD, Zambrana-Infantes E, Nieto-Quero A, Chun J, García-Fernández M, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Oliveira TG, Pérez-Martín M, Pedraza C. Effects of the LPA1 Receptor Deficiency and Stress on the Hippocampal LPA Species in Mice. Front Mol Neurosci. 2019 Jun 11;12:146. doi: 10.3389/fnmol.2019.00146. eCollection 2019.

PubMed ID: 31244601

Mathew D, Kremer KN, Strauch P, Tigyi G, Pelanda R, Torres RM. LPA5 Is an Inhibitory Receptor That Suppresses CD8 T-Cell Cytotoxic Function via Disruption of Early TCR Signaling. Front Immunol. 2019 May 28;10:1159. doi: 10.3389/fimmu.2019.01159. eCollection 2019.

PubMed ID: 31231367

Angkawijaya AE, Nguyen VC, Nakamura Y. Lysophosphatidic acid acyltransferases 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis. New Phytol. 2019 Jun 18. doi: 10.1111/nph.16000. [Epub ahead of print]

PubMed ID: 31211859

Inoue A, Raimondi F, Kadji FMN, Singh G, Kishi T, Uwamizu A, Ono Y, Shinjo Y, Ishida S, Arang N, Kawakami K, Gutkind JS, Aoki J, Russell RB. Illuminating G-Protein-Coupling Selectivity of GPCRs. Cell. 2019 Jun 13;177(7):1933-1947.e25. doi: 10.1016/j.cell.2019.04.044. Epub 2019 May 31.

PubMed ID: 31160049

Kommineni N, Mahira S, Domb AJ, Khan W. Cabazitaxel-Loaded Nanocarriers for Cancer Therapy with Reduced Side Effects. Pharmaceutics. 2019 Mar 25;11(3). pii: E141. doi: 10.3390/pharmaceutics11030141.

PubMed ID: 30934535

Choi SH, Kim HJ, Cho HJ, Park SD, Lee NE, Hwang SH, Rhim H, Kim HC, Cho IH, Nah SY. Gintonin-mediated release of astrocytic vascular endothelial growth factor protects cortical astrocytes from hypoxia-induced cell damages. J Ginseng Res. 2019 Apr;43(2):305-311. doi: 10.1016/j.jgr.2018.05.006. Epub 2018 May 31.

PubMed ID: 30976168

Reinink P, Souter MNT, Cheng TY, van Gorkom T, Lenz S, Kubler-Kielb J, Strle K, Kremer K, Thijsen SFT, Steere AC, Godfrey DI, Pellicci DG, Moody DB, Van Rhijn I. CD1b presents self and Borrelia burgdorferi diacylglycerols to human T cells. Eur J Immunol. 2019 Mar 10. doi: 10.1002/eji.201847949. [Epub ahead of print]

PubMed ID: 30854633

Kim HY, Jin H, Bae J, Choi HK. Metabolic and lipidomic investigation of the antiproliferative effects of coronatine against human melanoma cells. Sci Rep. 2019 Feb 28;9(1):3140. doi: 10.1038/s41598-019-39990-w.

PubMed ID: 30816283

Kim B, Pena CD, Auguste DT. Targeted Lipid Nanoemulsions Encapsulating Epigenetic Drugs Exhibit Selective Cytotoxicity on CDH1-/FOXM1+ Triple Negative Breast Cancer Cells. Mol Pharm. 2019 Mar 29. doi: 10.1021/acs.molpharmaceut.8b01065. [Epub ahead of print]

PubMed ID: 30883132

Kim B, Pena CD, Auguste DT. Targeted Lipid Nanoemulsions Encapsulating Epigenetic Drugs Exhibit Selective Cytotoxicity on CDH1-/FOXM1+ Triple Negative Breast Cancer Cells. Mol Pharm. 2019 Mar 29. doi: 10.1021/acs.molpharmaceut.8b01065. [Epub ahead of print]

PubMed ID: 30883132

López-Serrano C, Santos-Nogueira E, Francos-Quijorna I, Coll-Miró M, Chun J, López-Vales R. Lysophosphatidic acid receptor type 2 activation contributes to secondary damage after spinal cord injury in mice. Brain Behav Immun. 2019 Feb;76:258-267. doi: 10.1016/j.bbi.2018.12.007. Epub 2018 Dec 11.

PubMed ID: 30550929

Yanagida K, Igarashi H, Yasuda D, Kobayashi D, Ohto-Nakanishi T, Akahoshi N, Sekiba A, Toyoda T, Ishijima T, Nakai Y, Shojima N, Kubota N, Abe K, Kadowaki T, Ishii S, Shimizu T. The Gα12/13-coupled receptor LPA4 limits proper adipose tissue expansion and remodeling in diet-induced obesity. JCI Insight. 2018 Dec 20;3(24). pii: 97293. doi: 10.1172/jci.insight.97293.

PubMed ID: 30568036

Radhakrishnan R, Ha JH, Jayaraman M, Liu J, Moxley KM, Isidoro C, Sood AK, Song YS, Dhanasekaran DN. Ovarian cancer cell-derived lysophosphatidic acid induces glycolytic shift and cancer-associated fibroblast-phenotype in normal and peritumoral fibroblasts. Cancer Lett. 2019 Feb 1;442:464-474. doi: 10.1016/j.canlet.2018.11.023. Epub 2018 Nov 29.

PubMed ID: 30503552

Williams JR, Khandoga AL, Goyal P, Fells JI, Perygin DH, Siess W, Parrill AL, Tigyi G, Fujiwara Y. Unique ligand selectivity of the GPR92/LPA5 lysophosphatidate receptor indicates role in human platelet activation. J Biol Chem. 2009 Jun 19;284(25):17304-19. doi: 10.1074/jbc.M109.003194. Epub 2009 Apr 14.

PubMed ID: 19366702
Organic Solvents: Product is soluble in chloroform at all concentrations.
Biologically Compatible Solvents: Solubility in biologically compatible solvents such as dimethylsulfoxide (DMSO) or ethanol is limited. Product is completely soluble in ethanol:water (1:1, v/v), although heating and sonication may be necessary to disperse. Product is only partially soluble at higher ethanol content. Solubility in water (buffer) is limited to concentrations below the CMC of the molecule [CMC of Lyso PA] In order to obtain maximum interaction with biological systems at concentrations above the CMC it is necessary to reduce the particle size of the micelle by sonication or absorption of the LPA to fatty acid serum albumin (BSA). LPA's bound to fatty acid free albumin will appear as clear solutions. Solution has been achieved in phosphate buffered saline (PBS), pH 7.2, at up to 0.3 mM (0.14 mg per ml) in the presence of 0.1% (w/v) bovine serum albumin (essentially fatty acid free). Note: Absorption of dilute stock solutions to plastic and glass can be a serious source of variation. Approximately 75% of a 5uM stock solution was found to stick tightly to the wall of an Eppendorf vial within 30 minutes.
Storage: LPA should be stable in organic or aqueous solution at neutral conditions. Freezer storage (-20°C) is recommended for organic solutions (including ethanol:water, 1:1), while aqueous preparations (stable for 24-48 hours) should be stored refrigerated (4°C). Partial acyl migration from the gamma (1) position to the beta (2) position may be possible under certain non-neutral conditions, such as those stimulating the formation of an equilibrium mixture of 1,2 and 1,3-diglycerides in acidic or basic solution. Oxidation of the fatty acid double bond may occur if submitted to oxidizing conditions. Maintaining the product under an inert atmosphere (nitrogen or argon) may be appropriate for some applications.