850375 | 18:1 (Δ9-Cis) PC (DOPC)

1,2-dioleoyl-sn-glycero-3-phosphocholine


Powder

Size SKU Packaging Price
25mg 850375P-25mg 850375P-25mg 1 x 25mg $49.00
200mg 850375P-200mg 850375P-200mg 2 x 100mg $72.00
500mg 850375P-500mg 850375P-500mg 5 x 100mg $130.00
1g 850375P-1g 850375P-1g 1 x 1g $180.00

Chloroform

Size SKU Packaging Price
25mg 850375C-25mg 850375C-25mg 1 x 25mg 10mg/mL 2.5mL $49.00
200mg 850375C-200mg 850375C-200mg 2 x 100mg 25mg/mL 4mL $72.00
500mg 850375C-500mg 850375C-500mg 5 x 100mg 25mg/mL 4mL $130.00
1g 850375C-1g 850375C-1g 2 x 500mg 25mg/mL 20mL $180.00
Base Price: ${originalprice|money}
Custom Packaging: (${concentration} @$4.00/ea. + $100) ${custompackagingtotal|money}
Packaging: ${concentration}
Item Total: ${totalprice|money}
Please select an option above.
${sku} - ${concentration}

18:1 (Δ9-Cis) PC (DOPC)

18:1 (Δ9-Cis) PC (DOPC)

1,2-dioleoyl-sn-glycero-3-phosphocholine

The list of Phosphatidylcholine products offered by Avanti is designed to provide compounds having a variety of physical properties. Products available include short chain (C3-C8 are water soluble and hygroscopic), saturated, multi-unsaturated and mixed acid PC's. All of the products are purified by HPLC, and special precautions are taken to protect the products from oxidization and hydrolysis. Several of these products are manufactured under the current guidelines of Good Manufacturing Practice and are available for pharmaceutical use. If you have a requirement for a choline derivative not found on our list, please call us: custom synthesis is one of our specialties.

Hygroscopic
Yes
Light Sensitive
No
Molecular Formula
C44H84NO8P
Percent Composition
C 67.23%, H 10.77%, N 1.78%, O 16.28%, P 3.94%
Purity
>99%
Stability
1 Year
Storage Temperature
-20°C
CAS Number
4235-95-4
CAS Registry Number is a Registered Trademark of the American Chemical Society
Molecular Weight
786.113
Exact Mass
785.593
Synonyms
<p>1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine</p> <p>DOPC</p> <p>PC(18:1(9Z)/18:1(9Z))</p>

Qian S, Rai DK. Grazing-Angle Neutron Diffraction Study of the Water Distribution in Membrane Hemifusion: From the Lamellar to Rhombohedral Phase. J Phys Chem Lett. 2018 Sep 20:5778-5784. doi: 10.1021/acs.jpclett.8b01602. [Epub ahead of print]

PubMed ID: 30111108

Bai J, Tucker WC, Chapman ER. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat Struct Mol Biol. 2004 Jan;11(1):36-44. Epub 2003 Dec 29.

PubMed ID: 14718921

Lee MT, Yang PY, Charron NE, Hsieh MH, Chang YY, Huang HW. Comparison of the Effects of Daptomycin on Bacterial and Model Membranes. Biochemistry. 2018 Sep 7. doi: 10.1021/acs.biochem.8b00818. [Epub ahead of print]

PubMed ID: 30153001

Wang L, Biswas KH, Yoon BK, Kawakami LM, Park S, Groves JT, Li L, Huang W, Cho NJ. Membrane Reconstitution of Monoamine Oxidase Enzymes on Supported Lipid Bilayers. Langmuir. 2018 Aug 31. doi: 10.1021/acs.langmuir.8b01348. [Epub ahead of print]

PubMed ID: 30049212

Melby ES, Allen C, Foreman-Ortiz IU, Caudill ER, Kuech TR, Vartanian AM, Zhang X, Murphy CJ, Hernandez R, Pedersen JA. Peripheral Membrane Proteins Facilitate Nanoparticle Binding at Lipid Bilayer Interfaces. Langmuir. 2018 Aug 30. doi: 10.1021/acs.langmuir.8b02060. [Epub ahead of print]

PubMed ID: 30102857

Gadbery JE, Sampson NS. Use of an Isotope-Coded Mass Tag (ICMT) Method To Determine the Orientation of Cholesterol Oxidase on Model Membranes. Biochemistry. 2018 Aug 28. doi: 10.1021/acs.biochem.8b00788. [Epub ahead of print]

PubMed ID: 30125103

Wang Q, London E. Lipid Structure and Composition Control Consequences of Interleaflet Coupling in Asymmetric Vesicles. Biophys J. 2018 Jul 19. pii: S0006-3495(18)30814-2. doi: 10.1016/j.bpj.2018.07.011. [Epub ahead of print]

PubMed ID: 30082033

Liu X. Interactions of Silver Nanoparticles Formed In Situ on AFM Tips with Supported Lipid Bilayers. Langmuir. 2018 Aug 15. doi: 10.1021/acs.langmuir.8b01545. [Epub ahead of print]

PubMed ID: 30109936

Melby ES, Allen C, Foreman-Ortiz I, Caudill E, Kuech TR, Vartanian AM, Zhang X, Murphy CJ, Hernandez R, Pedersen JA. Peripheral Membrane Proteins Facilitate Nanoparticle Binding at Lipid Bilayer Interfaces. Langmuir. 2018 Aug 13. doi: 10.1021/acs.langmuir.8b02060. [Epub ahead of print]

PubMed ID: 30102857

Berry T, Dutta D, Chen R, Leong A, Wang H, Donald WA, Parviz M, Cornell B, Willcox M, Kumar N, Cranfield CG. The lipid membrane interactions of the cationic antimicrobial peptide chimeras melimine and cys-melimine. Langmuir. 2018 Aug 17. doi: 10.1021/acs.langmuir.8b01701. [Epub ahead of print]

PubMed ID: 30119612

Meker S, Chin H, Sut TN, Cho NJ. Amyloid-β Peptide Triggers Membrane Remodeling in Supported Lipid Bilayers Depending on Their Hydrophobic Thickness. Langmuir. 2018 Jul 18. doi: 10.1021/acs.langmuir.8b01196. [Epub ahead of print]

PubMed ID: 30021071

Bi H, Wang X, Han X, Voitchovsky K. Impact of Electric Fields on the Nanoscale Behavior of Lipid Monolayers at the Surface of Graphite in Solution. Langmuir. 2018 Jul 20. doi: 10.1021/acs.langmuir.8b01631. [Epub ahead of print]

PubMed ID: 30028144

Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS Nano. 2018 Jul 10. doi: 10.1021/acsnano.8b02053. [Epub ahead of print]

PubMed ID: 29975503

Ahmed S, Matsumura K, Hamada T. Hydrophobic Polyampholytes and Nonfreezing Cold Temperature Stimulate Internalization of Au Nanoparticles to Zwitterionic Liposomes. Langmuir. 2018 Jul 6. doi: 10.1021/acs.langmuir.8b00920. [Epub ahead of print]

PubMed ID: 29936842

Parkkila P, Elderdfi M, Bunker A, Viitala T. Biophysical Characterization of Supported Lipid Bilayers Using Parallel Dual-Wavelength Surface Plasmon Resonance and Quartz Crystal Microbalance Measurements. Langmuir. 2018 Jun 25. doi: 10.1021/acs.langmuir.8b01259. [Epub ahead of print]

PubMed ID: 29894192

Taylor GJ, Heberle FA, Seinfeld JS, Katsaras J, Collier CP , Sarles SA. Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes. Langmuir. 2017 Sep 26;33(38):10016-10026. doi: 10.1021/acs.langmuir.7b02022. Epub 2017 Sep 5.

PubMed ID: 28810118

Parkkila P, Elderdfi M, Bunker A, Viitala T. Biophysical Characterization of Supported Lipid Bilayers Using Parallel Dual-Wavelength Surface Plasmon Resonance and Quartz Crystal Microbalance Measurements. Langmuir. 2018 Jun 25. doi: 10.1021/acs.langmuir.8b01259. [Epub ahead of print]

PubMed ID: 29894192

Yang M, Wang K, Lin J, Wang L, Wei F, Zhu JT, Zheng W, Shen L. Gel Phase Membrane Retards Amyloid β-peptide (1-42) Fibrillation by Restricting Slaved Diffusion of Peptides on Lipid Bilayers. Langmuir. 2018 Jun 20. doi: 10.1021/acs.langmuir.8b01315. [Epub ahead of print]

PubMed ID: 29925241

Parkkila P, Elderdfi M, Bunker A, Viitala T. Biophysical characterization of supported lipid bilayers using parallel dual-wavelength surface plasmon resonance and quartz crystal microbalance measurements. Langmuir. 2018 Jun 12. doi: 10.1021/acs.langmuir.8b01259. [Epub ahead of print]

PubMed ID: 29894192

Wang M, Liu Z, Zhan W. Janus Liposomes: Gel-Assisted Formation and Bioaffinity-Directed Clustering. Langmuir. 2018 Jun 12. doi: 10.1021/acs.langmuir.8b00798. [Epub ahead of print]

PubMed ID: 29852065

Liu Y, Liu J. Cu2+-Directed Liposome Membrane Fusion, Positive-Stain Electron Microscopy, and Oxidation. Langmuir. 2018 Jun 12. doi: 10.1021/acs.langmuir.8b00864. [Epub ahead of print]

PubMed ID: 29804456

Ramakrishnan S, Gohlke A, Li F, Coleman J, Xu W, Rothman JE, Pincet F. High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis. Langmuir. 2018 May 9. doi: 10.1021/acs.langmuir.8b00116.

PubMed ID: 29694054

Ma L, Li Y, Ma J, Hu S, Li M. Watching Three-Dimensional Movements of Single Membrane Proteins in Lipid Bilayers. Biochemistry. 2018 Apr 12. doi: 10.1021/acs.biochem.8b00253.

PubMed ID: 29619828

Kakimoto Y, Tachihara Y, Okamoto Y, Miyazawa K, Fukuma T, Tero R. Morphology and Physical Properties of Hydrophilic-Polymer-Modified Lipids in Supported Lipid Bilayers. Langmuir. 2018 Jun 4. doi: 10.1021/acs.langmuir.8b00870. [Epub ahead of print]

PubMed ID: 29788718

Kakimoto Y, Tachihara Y, Okamoto Y, Miyazawa K, Fukuma T, Tero R. Morphology and Physical Properties of Hydrophilic-Polymer-Modified Lipids in Supported Lipid Bilayers. Langmuir. 2018 May 23. doi: 10.1021/acs.langmuir.8b00870. [Epub ahead of print]

PubMed ID: 29788718

Beltramo PJ, Scheidegger L, Vermant J. Toward Realistic Large-Area Cell Membrane Mimics: Excluding Oil, Controlling Composition, and Including Ion Channels. Langmuir. 2018 May 14. doi:

PubMed ID: 29715042

Yu Q, Sun J, Huang S, Chang H, Bai Q, Chen YX, Liang D. Inward Budding and Endocytosis of Membranes Regulated by de Novo Designed Peptides. Langmuir. 2018 May 16. doi: 10.1021/acs.langmuir.8b00882. [Epub ahead of print]

PubMed ID: 29733597

Liu X, Li X, Xu W, Zhang X, Huang Z, Wang F, Liu J. Sub-Angstrom Gold Nanoparticle/Liposome Interfaces Controlled by Halides. Langmuir. 2018 May 21. doi: 10.1021/acs.langmuir.8b01138.

PubMed ID: 29741377

Wang, F. and J. Liu. (2015). A Stable Lipid/TiO Interface with Headgroup-Inversed Phosphocholine and a Comparison with SiO. J Am Chem Soc

This study provides an alternative system for forming stable supported bilayers on TiO2, and represents the first example of interfacing inverse lipids with inorganic surfaces.

PubMed ID: 26302371

Kurniawan, Y., C. Scholz, and G.D. Bothun. (2013). n-Butanol Partitioning into Phase-Separated Heterogeneous Lipid Monolayers. Langmuir 29:10817-23

PubMed ID: 23888902

Suga, K. and H. Umakoshi. (2013). Detection of Nanosized Ordered Domains in DOPC/DPPC and DOPC/Ch Binary Lipid Mixture Systems of Large Unilamellar Vesicles Using a TEMPO Quenching Method. Langmuir

PubMed ID: 23506052

Vamparys, L., R. Gautier, S. Vanni, W.F. Bennett, D.P. Tieleman, B. Antonny, C. Etchebest, and P.F. Fuchs. (2013). Conical Lipids in Flat Bilayers Induce Packing Defects Similar to that Induced by Positive Curvature. Biophys J 104:585-93.

PubMed ID: 23442909

Peters, G.H., C. Wang, N. Cruys-Bagger, G.F. Velardez, J.J. Madsen, and P. Westh. (2013). Binding of Serotonin to Lipid Membranes. J Am Chem Soc

PubMed ID: 23311719

Acyl Chain Length and Saturation Modulate Interleaflet Coupling in Asymmetric Bilayers: Effects on Dynamics and Structural Order. Salvatore Chiantia and Erwin London, Biophysical Journal, Volume 103, Issue 11, 2311-2319, 5 December 2012.

PubMed ID: 23283230

Multi-Level Characterization of the Membrane Properties of Resveratrol-Incorporated Liposomes Jin Han, Keishi Suga, Keita Hayashi, Yukihiro Okamoto, and Hiroshi Umakoshi J. Phys. Chem. B, Article ASAP

PubMed ID: 28353350

Preferential Adsorption of l-Histidine onto DOPC/Sphingomyelin/3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol Liposomes in the Presence of Chiral Organic Acids Keishi Suga, Atsushi Tauchi, Takaaki Ishigami, Yukihiro Okamoto, and Hiroshi Umakoshi* Langmuir, Article ASAP

PubMed ID: 28272888

Interfacial Structure and Hydration of 3D Lipid Monolayers in Aqueous Solution, Halil I. Okur , Yixing Chen, Nikolay Smolentsev, Evangelia Zdrali, and Sylvie Roke, Phys. Chem. B, Article ASAP

PubMed ID: 28263601

Effects of Mechanical Properties of Lipid Bilayers on the Entry of Cell-Penetrating Peptides into Single Vesicles, Md. Zahidul Islam, Sabrina Sharmin, Victor Levadnyy, Sayed Ul Alam Shibly, and Masahito YamazakiLangmuir, Article ASAP DOI: 10.1021/acs.langmuir.6b03111

PubMed ID: 28166411

Phase Composition Control in Microsphere-Supported Biomembrane Systems Eric S. Fried, Yue-ming Li, and Malcolm Lane Gilchrist Langmuir, Just Accepted Manuscript DOI: 10.1021/acs.langmuir.6b04150

PubMed ID: 28198634

Rostovtseva, T.K., P.A. Gurnev, M.Y. Chen, and S.M. Bezrukov. (2012). Membrane lipid composition regulates tubulin interaction with mitochondrial voltage dependent anion channel. J Biol Chem

PubMed ID: 22763701

Liu, C., H. Miller, G. Orlowski, H. Hang, A. Upadhyaya, and W. Song. (2012). Actin reorganization is required for the formation of polarized B cell receptor signalosomes in response to both soluble and membrane-associated antigens. J Immunol 188:3237-46.

PubMed ID: 22387556

Liu, C., H. Miller, K.L. Hui, B. Grooman, S. Bolland, A. Upadhyaya, and W. Song. (2011). A balance of Bruton's tyrosine kinase and SHIP activation regulates B cell receptor cluster formation by controlling actin remodeling. J Immunol 187:230-9.

PubMed ID: 21622861

Gillissen JJJ, Tabaei SR, Jackman JA, Cho NJ Effect of Glucose on the Mobility of Membrane-Adhering Liposomes Langmuir. 2017 Dec 19. doi: 10.1021/acs.langmuir.7b03364.

PubMed ID: ​29200303 ​

Biswas KH, Jackman JA, Park JH, Groves JT, Cho NJ Interfacial Forces Dictate the Pathway of Phospholipid Vesicle Adsorption onto Silicon Dioxide Surfaces. Langmuir. 2018 Jan 11. doi: 10.1021/acs.langmuir.7b03799.

PubMed ID: 29281791

Shindell O, Mica N, Cheng KH, Wang E, Gordon VD. Dynamic Fingering in Adhered Lipid Membranes. Langmuir. 2018 Feb 7. doi: 10.1021/acs.langmuir.7b03708. [Epub ahead of print]

PubMed ID: 29363972

Li G, Kim J, Huang Z, St Clair JR, Brown DA, London E. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14025-14030. Epub 2016 Nov 21.

PubMed ID: 27872310

Bockelmann S, Mina JGM, Korneev S, Hassan DG, Mueller D, Hilderink A, Vlieg HC, Raijmakers R, Heck AJR, Haberkant P, Holthuis JCM. A search for ceramide binding proteins using bifunctional lipid analogs yields CERT-related protein StarD7. J Lipid Res. 2018 Jan 17. pii: jlr.M082354. doi: 10.1194/jlr.M082354. [Epub ahead of print]

PubMed ID: 29343537