850306 | 07:0 PC (DHPC)

1,2-diheptanoyl-sn-glycero-3-phosphocholine


Powder

Size SKU Packaging Price
25mg 850306P-25mg 850306P-25mg 1 x 25mg $101.50
200mg 850306P-200mg 850306P-200mg 1 x 200mg $184.00
500mg 850306P-500mg 850306P-500mg 1 x 500mg $340.00
1g 850306P-1g 850306P-1g 1 x 1g $500.00

Chloroform

Size SKU Packaging Price
200mg 850306C-200mg 850306C-200mg 2 x 100mg 25mg/mL 4mL $184.00
500mg 850306C-500mg 850306C-500mg 1 x 500mg 25mg/mL 20mL $340.00
Base Price: ${originalprice|money}
Custom Packaging: (${concentration} @$4.00/ea. + $100) ${custompackagingtotal|money}
Packaging: ${concentration}
Item Total: ${totalprice|money}
(Sales Tax may apply)
Please select an option above.
${sku} - ${concentration}

07:0 PC (DHPC)

07:0 PC (DHPC)

1,2-diheptanoyl-sn-glycero-3-phosphocholine

The list of Phosphatidylcholine products offered by Avanti is designed to provide compounds having a variety of physical properties. Products available include short chain (C3-C8 are water soluble and hygroscopic), saturated, multi-unsaturated and mixed acid PC's. All of the products are purified by HPLC, and special precautions are taken to protect the products for oxidization and hydrolysis. Several of these products are manufactured under the current guidelines of Good Manufacturing Practice and are available for pharmaceutical use. If you have a requirement for a choline derivative not found on our list, please call us: custom synthesis is one of our specialties.
Preserve the Activity of Solubilized Membrane Proteins
Protein Preservation DHPC preserves the native conformation and therefore the activity of the solubilized proteins. The three dimensional structure and activity of proteins are retained not only at the 10-15mM DHPC concentrations at which maximum solubilization usually occurs, but also over a large range of DHPC concentrations (up to 40mM). Not only is the three dimensional structure and hence the activity of most protein retained in excess DHPC, but the proteins also appear to be stable in DHPC. Such a result suggests that the direct interaction of DHPC with integral membrane proteins is weak. If the interaction of DHPC with membrane proteins is indeed weak, it follows that intrinsic membrane lipids will remain associated with the membrane proteins.
Solubilization Mechanism DHPC is thought to exert a wedge-like effect on the neighboring lipids, mainly due to its bulky polar group and short hydrocarbon chains. This produces membrane destabilization at relatively low DHPC concentrations. All membranes investigated are solubilized at an identical DHPC / lipid ratio. This finding is taken as evidence that DHPC primarily interacts with the lipid bilayer and not with the membrane proteins. The principle underlying the preservation of the native protein structure is the inability of DHPC to displace intrinsic membrane lipids from integral membrane proteins.
Advantages of DHPC
  • DHPC preserves the activity of solubilized membrane proteins.
  • DHPC is not readily oxidized, and is stable over a wide pH range (4-10).
  • DHPC forms micelles rather than bilayers when dispersed in water. (CMC = 1.4mM)
  • DHPC shows a broad size distribution depending on the NaCl concentration of suspension.
  • DHPC does not interfere with spectrophotometric measurements.
  • DHPC is an ultra pure compound.
Hygroscopic
Yes
Light Sensitive
No
Molecular Formula
C22H44NO8P
Percent Composition
C 54.87%, H 9.21%, N 2.91%, O 26.58%, P 6.43
Purity
>99%
Stability
1 Years
Storage Temperature
-20°C
CAS Number
39036-04-9
CAS Registry Number is a Registered Trademark of the American Chemical Society
Formula Weight
481.560
Exact Mass
481.280
Synonyms
DHPC(7:0/7:0)

Lim SL, Rodriguez-Ortiz CJ, Hsu HW, Wu J, Zumkehr J, Kilian J, Vidal J, Ayata P, Kitazawa M. Chronic copper exposure directs microglia towards degenerative expression signatures in wild-type and J20 mouse model of Alzheimer's disease. J Trace Elem Med Biol. 2020 Jun 20;62:126578. doi: 10.1016/j.jtemb.2020.126578. Epub ahead of print. PMID: 32599538.

PubMed ID: 32599538

Aryal CM, Bui NN, Khadka NK, Song L, Pan J. The helix 0 of endophilin modifies membrane material properties and induces local curvature. Biochim Biophys Acta Biomembr. 2020 Oct 1;1862(10):183397. doi: 10.1016/j.bbamem.2020.183397. Epub 2020 Jun 11. PMID: 32533976.

PubMed ID: 32533976

Pandey K, Yu XW, Steinmetz A, Alberini CM. Autophagy coupled to translation is required for long-term memory. Autophagy. 2020 Jun 5. doi: 10.1080/15548627.2020.1775393. Epub ahead of print. PMID: 32501746.

PubMed ID: 32501746

Chen Q, Guan G, Deng F, Yang D, Wu P, Kang S, Sun R, Wang X, Zhou D, Dai W, Wang X, Zhang H, He B, Chen D, Zhang Q. Anisotropic active ligandations in siRNA-Loaded hybrid nanodiscs lead to distinct carcinostatic outcomes by regulating nano-bio interactions. Biomaterials. 2020 Apr 3;251:120008. doi: 10.1016/j.biomaterials.2020.120008. Epub ahead of print. PMID: 32388031.

PubMed ID: 32388031

Jais A, Paeger L, Sotelo-Hitschfeld T, Bremser S, Prinzensteiner M, Klemm P, Mykytiuk V, Widdershooven PJM, Vesting AJ, Grzelka K, Minère M, Cremer AL, Xu J, Korotkova T, Lowell BB, Zeilhofer HU, Backes H, Fenselau H, Wunderlich FT, Kloppenburg P, Brüning JC. PNOCARC Neurons Promote Hyperphagia and Obesity upon High-Fat-Diet Feeding. Neuron. 2020 Apr 15:S0896-6273(20)30229-4. doi: 10.1016/j.neuron.2020.03.022. Epub ahead of print. PMID: 32302532.

PubMed ID: 32302532

Rodrigues DC, Mufteev M, Weatheritt RJ, Djuric U, Ha KCH, Ross PJ, Wei W, Piekna A, Sartori MA, Byres L, Mok RSF, Zaslavsky K, Pasceri P, Diamandis P, Morris Q, Blencowe BJ, Ellis J. Shifts in Ribosome Engagement Impact Key Gene Sets in Neurodevelopment and Ubiquitination in Rett Syndrome. Cell Rep. 2020 Mar 24;30(12):4179-4196.e11. doi: 10.1016/j.celrep.2020.02.107. PMID: 32209477.

PubMed ID: 32209477

Rosiewicz KS, Crowley T, Saher G, Kerkering J, Alisch M, Siffrin V. Comparison of RNA isolation procedures for analysis of adult murine brain and spinal cord astrocytes. J Neurosci Methods. 2020 Mar 1;333:108545. doi: 10.1016/j.jneumeth.2019.108545. Epub 2019 Dec 9. PMID: 31821821.

PubMed ID: 31821821

Sut TN, Park S, Choe Y, Cho NJ. Characterizing the Supported Lipid Membrane Formation from Cholesterol-Rich Bicelles. Langmuir. 2019 Nov 26;35(47):15063-15070. doi: 10.1021/acs.langmuir.9b02851. Epub 2019 Nov 12.

PubMed ID: 31670521

Landry AP, Moon S, Kim H, Yadav PK, Guha A, Cho US, Banerjee R. A Catalytic Trisulfide in Human Sulfide Quinone Oxidoreductase Catalyzes Coenzyme A Persulfide Synthesis and Inhibits Butyrate Oxidation. Cell Chem Biol. 2019 Nov 21;26(11):1515-1525.e4. doi: 10.1016/j.chembiol.2019.09.010. Epub 2019 Oct 4.

PubMed ID: 31591036

Nishimura N, Nakayama S, Horiuchi A, Kumoda M, Miyatake T. Reversible Aggregation of Chlorophyll Derivative Induced by Phase Transition of Lipid. Langmuir. 2019 May 16. doi: 10.1021/acs.langmuir.9b00586. [Epub ahead of print]

PubMed ID: 31063389

Schattling B, Engler JB, Volkmann C, Rothammer N, Woo MS, Petersen M, Winkler I, Kaufmann M, Rosenkranz SC, Fejtova A, Thomas U, Bose A, Bauer S, Träger S, Miller KK, Brück W, Duncan KE, Salinas G, Soba P, Gundelfinger ED, Merkler D, Friese MA. Bassoon proteinopathy drives neurodegeneration in multiple sclerosis. Nat Neurosci. 2019 Apr 22. doi: 10.1038/s41593-019-0385-4. [Epub ahead of print]

PubMed ID: 31011226

Nandigama K, Lusvarghi S, Shukla S, Ambudkar SV. Large-scale purification of functional human P-glycoprotein (ABCB1). Protein Expr Purif. 2019 Jul;159:60-68. doi: 10.1016/j.pep.2019.03.002. Epub 2019 Mar 6.

PubMed ID: 30851394

Abd Rahim MS, Cherniavskyi YK, Tieleman DP, Dames SA. NMR- and MD simulation-based structural characterization of the membrane-associating FATC domain of ataxia telangiectasia mutated. J Biol Chem. 2019 Mar 13. pii: jbc.RA119.007653. doi: 10.1074/jbc.RA119.007653. [Epub ahead of print]

PubMed ID: 30867195

Bender BJ, Vortmeier G, Ernicke S, Bosse M, Kaiser A, Els-Heindl S, Krug U, Beck-Sickinger A, Meiler J, Huster D. Structural Model of Ghrelin Bound to its G Protein-Coupled Receptor. Structure. 2019 Mar 5;27(3):537-544.e4. doi: 10.1016/j.str.2018.12.004. Epub 2019 Jan 24.

PubMed ID: 30686667

Rhoades JL, Nelson JC, Nwabudike I, Yu SK, McLachlan IG, Madan GK, Abebe E, Powers JR, Colón-Ramos DA, Flavell SW3. ASICs Mediate Food Responses in an Enteric Serotonergic Neuron that Controls Foraging Behaviors. Cell. 2019 Jan 10;176(1-2):85-97.e14. doi: 10.1016/j.cell.2018.11.023. Epub 2018 Dec 20.

PubMed ID: 30580965

Miranda C, Booth VK, Morrow MR. Effects of Amphipathic Polypeptides on Membrane Organization Inferred from Studies Using Bicellar Lipid Mixtures. Langmuir. 2018 Sep 20. doi: 10.1021/acs.langmuir.8b02257. [Epub ahead of print]

PubMed ID: 30196696

Kot EF, Arseniev AS, Mineev KS. On the behavior of most widely spread lipids in isotropic bicelles. Langmuir. 2018 Jun 20. doi: 10.1021/acs.langmuir.8b01454. [Epub ahead of print]

PubMed ID: 29924628

Hauser, H. (2000). Short-chain phospholipids as detergents. Biochim Biophys Acta 1508:164-81. [PubMed]

PubMed ID: 11090824

Kessi, J.,Poiree, J.C, Wehrli, E.,Bachofen, R.,Semenza, G.&Hauser, H.(1994). Short-chain phosphatidylcholines as superior detergents in solubilizing membrane proteins and preserving biological activity. Biochemistry 33: 10825-10836. [PubMed]

PubMed ID: 8075085