850155 | 18:1 PI(4,5)P2

1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-4',5'-bisphosphate) (ammonium salt)


Powder

Size SKU Packaging Price
100µg 850155P-100ug 850155P-100ug $121.00
500µg 850155P-500ug 850155P-500ug $490.00
Base Price: ${originalprice|money}
Custom Packaging: (${concentration} @$4.00/ea. + $100) ${custompackagingtotal|money}
Packaging: ${concentration}
Item Total: ${totalprice|money}
(Sales Tax may apply)
Please select an option above.
${sku} - ${concentration}

18:1 PI(4,5)P2

18:1 PI(4,5)P2

1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-4',5'-bisphosphate) (ammonium salt)

Although PI(4,5)P2 is a minor component of cell membranes, it plays a critical role as a substrate for a number of important signaling proteins. PI(4,5)P2 is an intermediate in the IP3/DAG pathway where it is hydrolyzed by phospholipase C to liberate the second messengers, inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). PI(4,5)P2 is also a substrate for PI 3-kinase where it is phosphorylated to PI(3,4,5)P3, an activator of downstream signaling components such as the protein kinase AKT.

Hygroscopic
No
Light Sensitive
No
Molecular Formula
C45H94N3O19P3
Percent Composition
C 50.32%, H 8.82%, N 3.91%, O 28.30%, P 8.65%
Purity
>99%
Stability
1 Year
Storage Temperature
-20°C
CAS Number
799268-56-7
CAS Registry Number is a Registered Trademark of the American Chemical Society
Formula Weight
1074.158
Exact Mass
1073.569
Synonyms
1,2-di-(9Z-octadecenoyl)-sn-glycero-3-[phosphoinositol-4,5-bisphosphate] (ammonium salt)
PIP2[4',5'](18:1(9Z)/18:1(9Z))

Sun S, Liu C, Rodriguez Melendez D, Yang T, Cremer PS. Immobilization of Phosphatidylinositides Revealed by Bilayer Leaflet Decoupling. J Am Chem Soc. 2020 Jul 20. doi: 10.1021/jacs.0c03800. Epub ahead of print. PMID: 32687699.

PubMed ID: 32687699

Yu CY, Kanehara K. The unfolded protein response modulates a phosphoinositide-binding protein through the IRE1-bZIP60 pathway. Plant Physiol. 2020 Mar 23:pp.01488.2019. doi: 10.1104/pp.19.01488. Epub ahead of print. PMID: 32205450.

PubMed ID: 32205450

Hong AW, Meng Z, Plouffe SW, Lin Z, Zhang M, Guan KL. Critical roles of phosphoinositides and NF2 in Hippo pathway regulation. Genes Dev. 2020 Apr 1;34(7-8):511-525. doi: 10.1101/gad.333435.119. Epub 2020 Feb 27. PMID: 32115406; PMCID: PMC7111263.

PubMed ID: 32115406

Yamada H, Mizuno S, Honda S, Takahashi D, Sakane F. Characterization of α-synuclein N-terminal domain as a novel cellular phosphatidic acid sensor. FEBS J. 2019 Nov 13. doi: 10.1111/febs.15137. [Epub ahead of print]

PubMed ID: 31722116

Tran RJ, Lalonde MS, Sly KL, Conboy JC. Mechanistic Investigation of HIV-1 Gag Association with Lipid Membranes. J Phys Chem B. 2019 Jun 6;123(22):4673-4687. doi: 10.1021/acs.jpcb.9b02655. Epub 2019 May 28.

PubMed ID: 31084006

Binte Mustafiz SS, Uyama T, Hussain Z, Kawai K, Tsuboi K, Araki N, Ueda N. The role of intracellular anionic phospholipids in the production of N-acyl-phosphatidylethanolamines by cytosolic phospholipase A2ε. J Biochem. 2018 Dec 4. doi: 10.1093/jb/mvy104. [Epub ahead of print]


PubMed ID: 30517655

Li Y, Soubias O, Li J1, Sun S, Randazzo PA, Byrd RA. Functional Expression and Characterization of Human Myristoylated-Arf1 in Nanodisc Membrane Mimetics. Biochemistry. 2019 Feb 20. doi: 10.1021/acs.biochem.8b01323. [Epub ahead of print]

PubMed ID: 30735034

Bao H, Goldschen-Ohm M, Jeggle P, Chanda B, Edwardson JM, Chapman ER. Exocytotic fusion pores are composed of both lipids and proteins. Nat Struct Mol Biol. 2016 Jan;23(1):67-73. doi: 10.1038/nsmb.3141. Epub 2015 Dec 14.

PubMed ID: 26656855

Chunyan Wang, Juan Pablo Palavicini, Miao Wang, Linyuan Chen, Kui Yang, Peter A. Crawford and Xianlin Han. Comprehensive and Quantitative Analysis of Polyphosphoinositide Species by Shotgun Lipidomics Revealed Their Alterations in db/db Mouse Brain. Anal. Chem., Article ASAP DOI: 10.1021/acs.analchem.6b02947

PubMed ID: 28193056

Mercredi, P.Y., N. Bucca, B. Loeliger, C.R. Gaines, M. Mehta, P. Bhargava, P.R. Tedbury, L. Charlier, N. Floquet, D. Muriaux, C. Favard, C.R. Sanders, E.O. Freed, J. Marchant, and M.F. Summers. (2016). Structural and Molecular Determinants of Membrane Binding by the HIV-1 Matrix Protein. J Mol Biol 2016 Apr 24;428(8):1637-55. doi: 10.1016/j.jmb.2016.03.005. Epub 2016 Mar 16.

PubMed ID: 26992353

Liang, T., L. Xie, C. Chao, Y. Kang, X. Lin, T. Qin, H. Xie, Z.P. Feng, and H.Y. Gaisano. (2014). Phosphatidylinositol 4,5-biphosphate (PIP2) Modulates Interaction of Syntaxin-1Awith Sulfonylurea Receptor 1 to Regulate Pancreatic Beta-Cell ATP-Sensitive Potassium Channels. J Biol Chem.

PubMed ID: 24429282

PtdIns4P synthesis by PI4KIIIalpha at the plasma membrane and its impact on plasma membrane identity. Nakatsu, F., J.M. Baskin, J. Chung, L.B. Tanner, G. Shui, S.Y. Lee, M. Pirruccello, M. Hao, N.T. Ingolia, M.R. Wenk, and P. De Camilli. (2012). J Cell Biol 199:1003-16.

PubMed ID: 23229899

Wang, K., Z. Yang, U. Nair, K. Mao, X. Liu, and D.J. Klionsky. (2012). Phosphatatidylinositol 4-kinases are required for autophagic membrane trafficking. J Biol Chem. 2012 Nov 2;287(45):37964-72. doi: 10.1074/jbc.M112.371591. Epub 2012 Sep 13.

PubMed ID: 22977244

Khelashvili, G., A. Galli, and H. Weinstein. (2012). Phosphatidylinositol 4,5-Biphosphate (PIP(2)) Lipids Regulate the Phosphorylation of Syntaxin N-Terminus by Modulating Both Its Position and Local Structure. Biochemistry 51:7685-98.

PubMed ID: 22950482

Hammond, G.R., M.J. Fischer, K.E. Anderson, J. Holdich, A. Koteci, T. Balla, and R.F. Irvine. (2012). PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337:727-30 2012 Aug 10;337(6095):727-30. doi: 10.1126/science.1222483. Epub 2012 Jun 21.

PubMed ID: 22722250

Maria J. Sarmento, Ana Coutinho, Aleksander Fedorov, Manuel Prieto, and Fabio Fernandes. Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P2 and PI(4,5)P2. Langmuir. Article ASAP.

PubMed ID: 28961003