100500 | E. coli Extract Total

E. coli Total Lipid Extract


Powder

Size SKU Packaging Price
100mg 100500P-100mg 100500P-100mg 1 x 100mg $92.00
500mg 100500P-500mg 100500P-500mg 5 x 100mg $270.00
1g 100500P-1g 100500P-1g 1 x 1g $420.00

Chloroform

Size SKU Packaging Price
100mg 100500C-100mg 100500C-100mg 1 x 100mg 25mg/mL 4mL $92.00
500mg 100500C-500mg 100500C-500mg 5 x 100mg 25mg/mL 4mL $270.00
1g 100500C-1g 100500C-1g 2 x 500mg 25mg/mL 20mL $420.00
Base Price: ${originalprice|money}
Custom Packaging: (${concentration} @$4.00/ea. + $100) ${custompackagingtotal|money}
Packaging: ${concentration}
Item Total: ${totalprice|money}
(Sales Tax may apply)
Please select an option above.
${sku} - ${concentration}

E. coli Extract Total

E. coli Total Lipid Extract

E-coli-Profile-100500

This product is an extract of E. coli B (ATCC 11303) grown in Kornberg Minimal media at 37°C and taken at 3/4 log growth phase.Total E. coli lipid extract is a chloroform:methanol extract of the respective tissue. This extract is partitioned against deionized water and the chloroform phase is concentrated. Polar lipid extract is the total lipid extract precipitated with acetone and then extracted with diethyl ether. Avanti does not perform any analytical procedures on this extract.

Hygroscopic
Yes
Light Sensitive
No
Stability
1 Year
Storage Temperature
-20°C
CAS Number
1240502-50-4
CAS Registry Number is a Registered Trademark of the American Chemical Society
Formula Weight
0.000
Exact Mass
0.000

Roussel G, White SH. The SecA ATPase motor protein binds to Escherichia coli liposomes only as monomers. Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183358. doi: 10.1016/j.bbamem.2020.183358. Epub 2020 May 19. PMID: 32416191.

PubMed ID: 32416191

Kotapati HK, Bates PD. Normal phase HPLC method for combined separation of both polar and neutral lipid classes with application to lipid metabolic flux. J Chromatogr B Analyt Technol Biomed Life Sci. 2020 May 15;1145:122099. doi: 10.1016/j.jchromb.2020.122099. Epub 2020 Apr 3. PMID: 32305707.

PubMed ID: 32305707

Mercier E, Wintermeyer W, Rodnina MV. Co-translational insertion and topogenesis of bacterial membrane proteins monitored in real time. EMBO J. 2020 Apr 20:e104054. doi: 10.15252/embj.2019104054. Epub ahead of print. PMID: 32311161.

PubMed ID: 32311161

Cancelarich NL, Wilke N, Fanani MAL, Moreira DC, Pérez LO, Alves Barbosa E, Plácido A, Socodato R, Portugal CC, Relvas JB, de la Torre BG, Albericio F, Basso NG, Leite JR, Marani MM. Somuncurins: Bioactive Peptides from the Skin of the Endangered Endemic Patagonian Frog Pleurodema somuncurense. J Nat Prod. 2020 Apr 24;83(4):972-984. doi: 10.1021/acs.jnatprod.9b00906. Epub 2020 Mar 5. PMID: 32134261.

PubMed ID: 32134261

Hesketh SJ, Klebl DP, Higgins AJ, Thomsen M, Pickles IB, Sobott F, Sivaprasadarao A, Postis VLG, Muench SP. Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation. Biochim Biophys Acta Biomembr. 2020 Jan 13:183192. doi: 10.1016/j.bbamem.2020.183192. Epub ahead of print. PMID: 31945320.

PubMed ID: 31945320

Knyazev DG, Kuttner R, Bondar AN, Zimmerman M, Siligan C, Pohl P. Voltage Sensing in Bacterial Protein Translocation. Biomolecules. 2020 Jan 3;10(1):E78. doi: 10.3390/biom10010078. PMID: 31947864.

PubMed ID: 31947864

Nguyen PH, Sigdel KP, Schaefer KG, Mensah GAK, King GM, Roberts AG. The effects of anthracycline drugs on the conformational distribution of mouse P-glycoprotein explains their transport rate differences. Biochem Pharmacol. 2020 Jan 16;174:113813. doi: 10.1016/j.bcp.2020.113813. Epub ahead of print. PMID: 31954717.

PubMed ID: 31954717

Brams M, Govaerts C, Kambara K, Price KL, Spurny R, Gharpure A, Pardon E, Evans GL, Bertrand D, Lummis SC, Hibbs RE, Steyaert J, Ulens C. Modulation of the Erwinia ligand-gated ion channel (ELIC) and the 5-HT3 receptor via a common vestibule site. Elife. 2020 Jan 28;9:e51511. doi: 10.7554/eLife.51511. PMID: 31990273; PMCID: PMC7015668.

PubMed ID: 31990273

Shi C, Öster C, Bohg C, Li L, Lange S, Chevelkov V, Lange A. Structure and Dynamics of the Rhomboid Protease GlpG in Liposomes Studied by Solid-State NMR. J Am Chem Soc. 2019 Oct 30;141(43):17314-17321. doi: 10.1021/jacs.9b08952. Epub 2019 Oct 16.

PubMed ID: 31603315

Entova S, Guan Z, Imperiali B. Investigation of the conserved reentrant membrane helix in the monotopic phosphoglycosyl transferase superfamily supports key molecular interactions with polyprenol phosphate substrates. Arch Biochem Biophys. 2019 Oct 30;675:108111. doi: 10.1016/j.abb.2019.108111. Epub 2019 Sep 26.

PubMed ID: 31563509

Pang SS, Bayly-Jones C, Radjainia M, Spicer BA, Law RHP, Hodel AW, Parsons ES, Ekkel SM, Conroy PJ, Ramm G, Venugopal H, Bird PI, Hoogenboom BW, Voskoboinik I, Gambin Y, Sierecki E, Dunstone MA, Whisstock JC. The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1. Nat Commun. 2019 Sep 19;10(1):4288. doi: 10.1038/s41467-019-12279-2.

PubMed ID: 31537793

Deng X, Gonzalez Llamazares A, Wagstaff JM, Hale VL, Cannone G, McLaughlin SH, Kureisaite-Ciziene D, Löwe J. The structure of bactofilin filaments reveals their mode of membrane binding and lack of polarity. Nat Microbiol. 2019 Sep 9. doi: 10.1038/s41564-019-0544-0. [Epub ahead of print]

PubMed ID: 31501539

Vernen F, Harvey PJ, Dias SA, Veiga AS, Huang YH, Craik DJ, Lawrence N, Troeira Henriques S. Characterization of Tachyplesin Peptides and Their Cyclized Analogues to Improve Antimicrobial and Anticancer Properties. Int J Mol Sci. 2019 Aug 26;20(17). pii: E4184. doi: 10.3390/ijms20174184.

PubMed ID: 31455019

Öster C, Hendriks K, Kopec W, Chevelkov V, Shi C, Michl D, Lange S, Sun H, de Groot BL, Lange A. Sci Adv. 2019 Jul 31;5(7):eaaw6756. doi: 10.1126/sciadv.aaw6756. eCollection 2019 Jul. The conduction pathway of potassium channels is water free under physiological conditions.

PubMed ID: 31392272

Wilson JS, Churchill-Angus AM, Davies SP, Sedelnikova SE, Tzokov SB, Rafferty JB, Bullough PA, Bisson C, Baker PJ. Identification and structural analysis of the tripartite α-pore forming toxin of Aeromonas hydrophila. Nat Commun. 2019 Jul 1;10(1):2900. doi: 10.1038/s41467-019-10777-x.

PubMed ID: 31263098

Hsu ET, Vervacke JS, Distefano MD, Hrycyna CA. A Quantitative FRET Assay for the Upstream Cleavage Activity of the Integral Membrane Proteases Human ZMPSTE24 and Yeast Ste24. Methods Mol Biol. 2019;2009:279-293. doi: 10.1007/978-1-4939-9532-5_21.

PubMed ID: 31152411

Aurora Pinazo, Ramon Pons, Marta Bustelo, María Ángeles Manresa, Carmen Morán, Miriam Raluy, Lourdes Pérez. Gemini histidine based surfactants: Characterization; surface properties and biological activity. Journal of Molecular Liquids. 2019 September 1; 289:111156. doi: 10.1016/j.molliq.2019.111156


Grāve K, Bennett MD, Högbom M. Structure of Mycobacterium tuberculosis phosphatidylinositol phosphate synthase reveals mechanism of substrate binding and metal catalysis. Commun Biol. 2019 May 8;2:175. doi: 10.1038/s42003-019-0427-1. eCollection 2019.

PubMed ID: 31098408

Hossain F, Moghal MMR, Islam MZ, Moniruzzaman M, Yamazaki M. Membrane potential is vital for rapid permeabilization of plasma membranes and lipid bilayers by the antimicrobial peptide lactoferricin B. J Biol Chem. 2019 Jul 5;294(27):10449-10462. doi: 10.1074/jbc.RA119.007762. Epub 2019 May 22.

PubMed ID: 31118274

Blevins MS, Klein DR, Brodbelt JS. Localization of Cyclopropane Modifications in Bacterial Lipids via 213 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem. 2019 May 21;91(10):6820-6828. doi: 10.1021/acs.analchem.9b01038. Epub 2019 May 3.

PubMed ID: 31026154

Blevins MS, Klein DR, Brodbelt JS. Localization of Cyclopropane Modifications in Bacterial Lipids via 213 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem. 2019 May 3. doi: 10.1021/acs.analchem.9b01038. [Epub ahead of print]

PubMed ID: 31026154

Nandigama K, Lusvarghi S, Shukla S, Ambudkar SV. Large-scale purification of functional human P-glycoprotein (ABCB1). Protein Expr Purif. 2019 Jul;159:60-68. doi: 10.1016/j.pep.2019.03.002. Epub 2019 Mar 6.

PubMed ID: 30851394

Wilhelm MJ, Sharifian Gh M, Dai HL. Influence of molecular structure on passive membrane transport: A case study by second harmonic light scattering. J Chem Phys. 2019 Mar 14;150(10):104705. doi: 10.1063/1.5081720.

PubMed ID: 30876365

Reif MM, Fischer M, Fredriksson K, Hagn F, Zacharias M. The N-Terminal Segment of the Voltage-Dependent Anion Channel: A Possible Membrane-Bound Intermediate in Pore Unbinding. J Mol Biol. 2019 Jan 18;431(2):223-243. doi: 10.1016/j.jmb.2018.09.015. Epub 2018 Oct 17.

PubMed ID: 30339869

Haruyama T, Sugano Y, Kodera N, Uchihashi T, Ando T, Tanaka Y, Konno H, Tsukazaki T. Single-Unit Imaging of Membrane Protein-Embedded Nanodiscs from Two Oriented Sides by High-Speed Atomic Force Microscopy. Structure. 2019 Jan 2;27(1):152-160.e3. doi: 10.1016/j.str.2018.09.005. Epub 2018 Oct 11.

PubMed ID: 30318467

Overall SA, Zhu S, Hanssen E, Separovic F, Sani MA. In Situ Monitoring of Bacteria under Antimicrobial Stress Using 31P Solid-State NMR. Int J Mol Sci. 2019 Jan 6;20(1). pii: E181. doi: 10.3390/ijms20010181.

PubMed ID: 30621328

Young J, Duong F. Investigating the stability of the SecA-SecYEG complex during protein translocation across the bacterial membrane. J Biol Chem. 2019 Mar 8;294(10):3577-3587. doi: 10.1074/jbc.RA118.006447. Epub 2019 Jan 2.

PubMed ID: 30602566

Berry T, Dutta D, Chen R, Leong A, Wang H, Donald WA, Parviz M, Cornell B, Willcox M, Kumar N, Cranfield CG. The lipid membrane interactions of the cationic antimicrobial peptide chimeras melimine and cys-melimine. Langmuir. 2018 Aug 17. doi: 10.1021/acs.langmuir.8b01701. [Epub ahead of print]

PubMed ID: 30119612

Stuart, L.J., Buck, J.P., Tremblay, A.E., Buist, P.H. (2006) Configurational analysis of cyclopropyl fatty acids isolated from Escherichia coli. Org Lett. 8:79-81

PubMed ID: 16381572

Newman, M.J. & Wilson, T.H. (1980) Solubilization and Reconsitution of the Lactose Transport System from Escherichia coli.J. Biol. Chem. 255:10583-10586.Kagawa, Y. & Rackeer E. (1971)Partial Resolution of the Enzymes Catalyzing Oxidative Phosphorylation. J. Biol. Chem. 246:5477-5487.Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry, Giuseppe Paglia & Giuseppe Astarita Nature Protocols 12, 797-813 (2017) doi:10. 1038/nprot.2017.013

PubMed ID: 28301461